Design, synthesis, theoretical study, antioxidant, and anticholinesterase activities of new Pyrazolo-fused phenanthrolines.

Efraín Polo-Cuadrado^{1,*}, Cristian Rojas-Peña^{1,2}, Karen Acosta-Quiroga^{1,2}, Lorena Camargo-Ayala³, Iván Brito⁴, Jonathan Cisterna⁵, Félix Moncada⁶, Jorge Trilleras⁷, Yeray A. Rodríguez-Núñez⁸ and Margarita Gutierrez^{1,*}

- ¹ Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3460000, Chile.
- ² Doctorado en Química, Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile, Santiago, Chile.
- ³ Doctorado en Ciencias Mención I + D de Productos Bioactivos, Instituto de Química de Recursos Naturales, Laboratorio de Síntesis Orgánica (LSO-Act-Bio), Universidad de Talca, Casilla 747, Talca 3460000, Chile.
- ⁴ Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Universidad de Antofagasta, Campus Coloso, Antofagasta 02800, Chile.
- ⁵Departamento de Química, Facultad de Ciencias, Universidad de Católica del Norte, Sede Casa Central, Av. Angamos 0610, Antofagasta, Chile
- ⁶ Departamento de Química, Universidad Nacional de Colombia, Av. Cra 30 # 45-03, Bogotá, Colombia.
- ⁷ Grupo de Investigación en Compuestos Heterocíclicos, Universidad del Atlántico, Puerto Colombia 08007, Colombia
- ⁸ Departamento de Química, Facultad de Ciencias Exactas, Universidad Andrés Bello, Republica 275, Santiago, 8370146, Chile.

*Correspondence: epolo@utalca.cl (E.P-C.); mgutierrez@utalca.cl (M.G.)

Fig S1. ¹H NMR for 2-amino-10-methyl-4,8-diphenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (**5a**)

Fig S2. ¹³C NMR for 2-amino-10-methyl-4,8-diphenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitri-le (5a)

Fig S3. HRMS for 2-amino-10-methyl-4,8-diphenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (**5a**)

Fig S4. IR spectrum for 2-amino-10-methyl-4,8-diphenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (**5a**)

Fig S5. ¹H NMR for 2-amino-10-methyl-8-phenyl-4-(p-tolyl)-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (5b)

Fig S6. HRMS for 2-amino-10-methyl-8-phenyl-4-(p-tolyl)-6,8-dihydro-5H-pyrazolo[3,4-j][1,7]phenanthroline-3-carbonitrile (5b)

Fig S7. IR spectrum for 2-amino-10-methyl-8-phenyl-4-(p-tolyl)-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (5b)

 $\label{eq:star} Fig~S8.~~^{HNMR}~for~2-amino-4-(4-methoxyphenyl)-10-methyl-8-phenyl-6,8-dihydro-5H-pyrazolo[3,4-j][1,7]phenanthroline-3-carbonitrile~(5c)$

Fig S9. HRMS for 2-amino-4-(4-methoxyphenyl)-10-methyl-8-phenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (5c)

Fig S10. IR spectrum for 2-amino-4-(4-methoxyphenyl)-10-methyl-8-phenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (5c)

Fig S12. HRMS for 2-amino-4-(4-chlorophenyl)-10-methyl-8-phenyl-6,8-dihydro-5H-pyrazolo[3,4-j][1,7]phenanthroline-3-carbonitrile (5d)

 $\label{eq:Fig-S13} Fig-S13. \ IR \ spectrum \ for \ 2-amino-4-(4-chlorophenyl)-10-methyl-8-phenyl-6, 8-dihydro-5H-pyrazolo[3,4-j][1,7]phenanthroline-3-carbonitrile (5d)$

Fig S14. ¹H NMR for 2-amino-10-methyl-4-(4-nitrophenyl)-8-phenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (5e)

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 **Fig S15.** HRMS for 2-amino-10-methyl-4-(4-nitrophenyl)-8-phenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (**5e**)

Fig S16. IR spectrum for 2-amino-10-methyl-4-(4-nitrophenyl)-8-phenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (5e)

Fig S17. ¹H NMR for 2-amino-4-(2-chloroquinolin-3-yl)-10-methyl-8-phenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (**5f**)

Fig S19. IR spectrum for 2-amino-4-(2-chloroquinolin-3-yl)-10-methyl-8-phenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (5f)

Fig S20. ¹H NMR for 2-amino-4-(4-hydroxyphenyl)-10-methyl-8-phenyl-6,8-dihydro-5*H*-pyrazolo[3,4*j*][1,7]phenanthroline-3-carbonitrile (5g)

Fig S22. IR spectrum for 2-amino-4-(4-hydroxyphenyl)-10-methyl-8-phenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (**5g**)

 $\label{eq:Fig_S23.1} \begin{tabular}{ll} Fig_S23.1 & H \ NMR \ for \ 2-amino-4-(4-cyanophenyl)-10-methyl-8-phenyl-6,8-dihydro-5H-pyrazolo[3,4-j][1,7]phenanthroline-3-carbonitrile (Sh) \end{tabular}$

Fig S24. HRMS for 2-amino-4-(4-cyanophenyl)-10-methyl-8-phenyl-6,8-dihydro-5H-pyrazolo[3,4-j][1,7]phenanthroline-3-carbonitrile (**5h**)

 $\label{eq:Fig-S25} Fig-S25. \ IR \ spectrum \ for \ 2-amino-4-(4-cyanophenyl)-10-methyl-8-phenyl-6, 8-dihydro-5H-pyrazolo[3,4-j][1,7] phenanthroline-3-carbonitrile ({\bf 5h})$

Fig S26. ¹H NMR for 2-amino-10-methyl-8-phenyl-4-(pyridin-3-yl)-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (**5i**)

Fig S27. HRMS for 2-amino-10-methyl-8-phenyl-4-(pyridin-3-yl)-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (**5i**)

Fig S28. IR spectrum for 2-amino-10-methyl-8-phenyl-4-(pyridin-3-yl)-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (**5i**)

Fig S29. ¹H NMR for 2-amino-10-methyl-8-phenyl-4-(3,4,5-trimethoxyphenyl)-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (**5***j*)

Fig S31. IR spectrum for 2-amino-10-methyl-8-phenyl-4-(3,4,5-trimethoxyphenyl)-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (**5j**)

Fig S32. ¹H NMR for 2-amino-4-(furan-2-yl)-10-methyl-8-phenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile(**5**k)

Fig S33. HRMS for 2-amino-4-(furan-2-yl)-10-methyl-8-phenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile(**5**k)

Fig S34. ¹HNMR 2-amino-4-(benzo[d][1,3]dioxol-5-yl)-10-methyl-8-phenyl-6,8-dihydro-5*H*-pyrazolo[3,4*j*][1,7]phenanthroline-3-carbonitrile **(51)**

Fig S35. HRMS for 2-amino-4-(benzo[d][1,3]dioxol-5-yl)-10-methyl-8-phenyl-6,8-dihydro-5*H*-pyrazolo[3,4 *j*][1,7]phenanthroline-3-carbonitrile **(51)**

Fig S36. IR spectrum for 2-amino-4-(benzo[d][1,3]dioxol-5-yl)-10-methyl-8-phenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (**51**)

Fig S37. ¹H NMR for 2-amino-10-methyl-8-phenyl-4-(quinolin-3-yl)-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (**5m**)

Fig S38. HRMS for 2-amino-10-methyl-8-phenyl-4-(quinolin-3-yl)-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (5m)

Fig S39. ¹H NMR for 4-(4-(dimethylamino)phenyl)-2-ethoxy-10-methyl-8-phenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (**5n**)

Fig S40. IR spectrum for 4-(4-(dimethylamino)phenyl)-2-ethoxy-10-methyl-8-phenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (**5n**)

Fig S41. ¹H NMR for 2-ethoxy-4-(4-methoxyphenyl)-10-methyl-8-phenyl-6,8-dihydro-5*H*-pyrazolo[3,4*j*][1,7]phenanthroline-3-carbonitrile (**50**)

Fig S42. ¹³C NMR for 2-ethoxy-4-(4-methoxyphenyl)-10-methyl-8-phenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (**50**)

Fig S43. HRMS for 2-ethoxy-4-(4-methoxyphenyl)-10-methyl-8-phenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (**50**)

Fig S44. ¹H NMR for 2-ethoxy-10-methyl-4,8-diphenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (**5p**)

Fig S45. ¹³C NMR for 2-ethoxy-10-methyl-4,8-diphenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (5p)

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750
 800
 850
 900
 950
 1000

 Fig
 S46.
 HRMS
 for
 2-ethoxy-10-methyl-4,8-diphenyl-6,8-dihydro-5H-pyrazolo[3,4-j][1,7]phenanthroline-3-carbonitrile
 (5p)

Fig S47. IR spectrum for 2-ethoxy-10-methyl-4,8-diphenyl-6,8-dihydro-5*H*-pyrazolo[3,4-*j*][1,7]phenanthroline-3-carbonitrile (**5p**)

Entry	MW (g/mol)	Acceptor HBª	Donor HB ^b	PSA (Ų)°	log P (o/w) ^d	log S ^e	GI absorption f	BBB entry ^g	Rule 5 ^h
5a	428,49	4	1	9341	3,54	-6,35	High	No	0
5b	442,53	4	1	9341	3,75	-6,65	High	No	0
5c	458,51	5	1	10264	3,88	-6,42	High	No	0
5d	462,95	4	1	9341	3,93	-6,94	High	No	0
5e	473,49	6	1	13923	3,10	-6,40	Low	No	0
5f	513,98	5	1	10630	3,89	-7,65	Low	No	1
5g	444,49	5	2	11364	3,13	-6,21	High	No	0
5h	453,50	5	1	11720	3,39	-6,29	Low	No	0
5i	429,48	5	1	10630	3,22	-5,68	High	No	0
5j	518,57	7	1	12110	4,28	-6,56	Low	No	1
5k	472,50	6	1	11187	3,82	-6,46	High	No	0
51	418,45	5	1	10655	3,37	-5,71	High	No	0
5m	479,53	5	1	10630	3,60	-6,85	Low	No	0
5n	500,59	5	0	7986	4,79	-6,89	High	No	1
50	487,55	6	0	8585	4,69	-6,73	High	No	0
5p	457,53	5	0	7662	4,51	-6,66	High	No	0

Table S1. Main descriptors for the series (5a-p) calculated with SwissADME

^aEstimated number of H bonds that are accepted by the solute of water molecules in an aqueous solution. ^b Estimated number of H bonds donated by the solute to water molecules in an aqueous

solution. ^c Van der Waals polar surface area for nitrogen and oxygen atoms. ^d log P for octanol / water (-2.0 to -6.5). ^e Predicted aqueous solubility, log S, S in mol/dm³ (-6.5 to 0.5). ^f Gastrointestinal absorption according to BOILED-Egg diagram. ^g Permeability of the blood-brain barrier (BBB). ^h Number of violations of Lipinski's rule of five. The rules are: PM <500, log P o/w <5, donor HB \leq 5, accept HB \leq 10. Compounds that meet these rules are considered drugs. (The "five" refers to the limits, which are multiples of 5.)

Table S2. Frontier molecular orbitals energies (E_{HOMO} and E_{LUMO}), electronegativity (χ), chemical hardness (η), chemical softness (S) and electron affinity (EA).

Entry	E _{HOMO} (eV)	E _{LUMO} (eV)	ΔE (eV)	χ (eV)	η (eV)	S (eV)- 1	EA (eV)
5a	-5,66	-1,92	3,74	3,79	1,87	0,53	1,92
5b	-5,64	-1,89	3,75	3,76	1,88	0,53	1,89
5c	-5,63	-1,86	3,77	3,74	1,88	0,53	1,86
5d	-5,73	-2,03	3,7	3,88	1,85	0,54	2,03
5e	-5,83	-2,64	3,19	4,24	1,6	0,63	2,64
5f	-5,68	-2,04	3,64	3,86	1,82	0,55	2,04
5g	-5,6	-1,87	3,73	3,74	1,87	0,54	1,87
5h	-5,82	-2,22	3,6	4,02	1,8	0,56	2,22
5i	-5,61	-1,66	3,95	3,64	1,98	0,51	1,66
5j	-5,32	-1,75	3,57	3,53	1,78	0,56	1,75
5k	-5,64	-1,90	3,74	3,77	1,87	0,53	1,9
51	-5,69	-2,04	3,64	3,86	1,82	0,55	2,04
5m	-5,63	-2,08	3,55	3,86	1,78	0,56	2,08
5n	-5,61	-1,88	3,73	3,74	1,87	0,54	1,88
50	-5,73	-2,04	3,69	3,88	1,84	0,54	2,04
5p	-5,7	-1,99	3,71	3,84	1,86	0,54	1,99
5q	-5,27	-1,86	3,41	3,57	1,7	0,59	1,86

Fig S48. Pharmacokinetic profile of the compounds **5a-p**. BOILED-Egg diagram of synthesized compounds. White region: high probability of passive absorption by the gastrointestinal tract; yellow region (yolk): high probability of brain penetration. Yolk and the white region are not mutually exclusive. Bluepoint: P-gp substrate. Redpoint: No P-gp substrate.