Supporting Information

Core-shell Structured Co₃O₄@PPy Composite for Electrochemical Determination of Tertbutylhydroquinone

Yuxi Zhang^{a,‡,*}, Cunli Wang^{b,‡}, Yalin Zhao^b, Zhe Yu^b, Fengchun Yang^{a, b,} *, Xin Zhang^{a,*}

^a The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Key Laboratory of Groundwater Contamination and Remediation, China Geological Survey & Hebei Province, Shijiazhuang, Hebei, 050061, China.

^b Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China

^{*t*} Yuxi Zhang and Cunli Wang contributed equally.

E-mail: zhangyuxi@mail.cgs.gov.cn, fyang@nwu.edu.cn, zhangxin@nwu.edu.cn

Figure S1. SEM images of Co₃O₄@PPy synthesized with various volume of Py monomer 6 μ L (a), 12 μ L (b), 18 μ L (c), 24 μ L (d).

Figure S2. CVs of Co₃O₄@PPy in 0.1 M PBS (pH 7.0) containing 100 μ M TBHQ with 6 μ L, 12 μ L, 18 μ L, 24 μ L Py monomer.

Figure S3. FT-IR spectrum of Co₃O₄, PPy and Co₃O₄@PPy.

Wave number (cm ⁻¹)	Mode of vibration	Reference
669	Co-O	[28]
572		[28]
792	the presence of polymerized pyrrole	[29]
927	=C-H out-of-plane of polypyrrole	[30]
1045	N-H in-plane deformation of H ⁺ -doped	[29]
	polypyrrole	
1109	C-N stretching	[31]
1315	C-H in-plane	[31]
1554	symmetric pyrrole ring-stretching	[33]
1465	C=C and C-N stretching of pyrrole ring	[32]
1640		[30]
3423	O–H stretching vibration	[34]

Table S1. Attributions of characteristic peaks on the FT-IR spectrum of $\mathrm{Co_3O_4}@PPy$.

Figure S4. XPS survey spectrum of Co₃O₄@PPy.

Figure S5. CVs of (a) GCE (b) Co_3O_4 (c) PPy (d) Co_3O_4 @PPy before(dotted) and after(solid) adding 100 μ M TBHQ in 0.1 M PBS (pH = 7).

Figure S6. (a) CVs of $Co_3O_4@PPy/GCE$ in 0.1 M PBS (pH = 7) containing individual concentrations of TBHQ (0, 50, 100, 150, 200, 250). (b) Corresponds to a linear relationship between TBHQ concentrations and current response.

Figure S7. CVs of Co₃O₄@PPy/GCE in different buffer solution containing 100 μ M TBHQ.

Figure S8. The effects of accumulation time (a) and accumulation potential (b) on the oxidation current of 100 μ M TBHQ in 0.1 M PBS solution (pH 7.0).

Electrode materials	Linear range	LOD	References
	(µM)	(µM)	
MIP/ZC/GCE	1-75	0.42	[8]
PdAuNPs/ERGO/GCE	3-360	0.28	[6]
Zn TPHS@GO/GCE	0.80–65	0.137	[36]
Poly(methacrylic	2.84-150	0.85	[7]
acid-hemin)-MWNT/GCE			
Co ₃ O ₄ @PPy/GCE	0.2-600	0.05	This work

Table S2. Comparison of TBHQ test with previous literature

Real samples	TBHQ spiked	TBHQ found	Recovery	RSD
	(µM)	(µM)	(%)	(%)
Sesame oil	50	50.5	101	2.0
	80	79.2	99.0	2.1
	100	99.9	99.9	3.6

Table S3. Determination of TBHQ added sesame oil.