Electronic Supplementary Information for

Surface state modulation of blue-emitting carbon dots with high quantum yield and high product yield

Mingxiu Lei^a, Yanting Xie^a, Lin Chen^{ab}, Xinghua Liu^a, Yongzhen Yang *^{ab}, Jingxia Zheng *^{ab}, Qiang Li *^c

^aKey Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China ^bShanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China ^cIntervention Department of the Second Hospital of Shanxi Medical University, Taiyuan 030001, China

E-mail: yyztyut@126.com, zhengjingxia@tyut.edu.cn, liqiang8702226@163.com.

Supplementary Figures and Tables

CDs	Molecular structure of carbon source	n	QY/%	PY/%
TA-CDs	Н НО—С—СООН НО—С—СООН Н	–COOH: 2 –OH: 2	2.89	54.74
MA-CDs	HO $-C$ —COOH H_2C —COOH	-COOH: 2 -OH: 1	3.06	57.21
LA-CDs	$HO - C - COOH CH_3$	–COOH: 1 –OH: 1	3.31	58.76
OA-CDs	СООН СООН	COOH: 2 OH: 0	3.44	56.73
a-CDs	$H_2C - COOH$ HO - C - COOH $H_2C - COOH$	-COOH: 3 -OH: 1	60.52	54.19
CA-CDs	$\begin{array}{c} H_2C - COOH \\ H_2O \\ HO - C - COOH \\ H_2C - COOH \end{array}$	-СООН: 3 -ОН: 1 H ₂ O: 1	97.32	52.56

 Table S1 Comparison of QY and PY values of CDs synthesized with different carbon sources (silane coupling agent is KH-792)

Fig. S1 Raman spectrum of CDs synthesized with different carbon sources (silane coupling agent

is KH-792)

CDs	C/%	H/%	N/%	O/%	Si/%
TA-CDs	37.30	8.92	16.05	6.76	30.79
MA-CDs	37.60	8.82	15.96	6.27	31.36
LA-CDs	37.75	8.56	16.01	5.72	31.96
OA-CDs	37.49	9.10	16.21	6.80	30.40
a-CDs	38.94	8.57	16.43	6.95	29.11
CA-CDs	36.25	7.98	15.29	14.71	25.77

Table S2 Elemental analysis of CDs synthesized with different carbon sources (silane coupling agent is KH-792)

Fig. S2 XPS spectrum of CDs synthesized with different carbon sources (silane coupling agent is KH-792)

CDs	C/%	N/%	O/%	Si/%
TA-CDs	60.06	14.44	14.87	10.62
MA-CDs	58.63	15.74	14.00	11.63
LA-CDs	57.89	14.94	15.17	12.00
OA-CDs	60.65	15.47	13.35	10.53
a-CDs	57.82	16.15	14.56	11.46
CA-CDs	56.40	13.22	19.83	10.55

 Table S3 Element content analysis of XPS for CDs synthesized with different carbon sources (silane coupling agent is KH-792)

Fig. S3 UV-vis absorption spectroscopy of CDs synthesized with different carbon sources (silane coupling agent is KH-792)

CDs	α1	$ au_1$ (ns)	α2	$ au_2$ (ns)	χ^2	$\langle \tau \rangle$ (ns)
TA-CDs	0.30	1.79	0.70	11.07	1.30	10.47
MA-CDs	0.34	4.03	0.66	10.53	1.05	9.46
LA-CDs	0.30	1.82	0.70	12.21	1.30	11.59
OA-CDs	0.24	3.95	0.76	13.78	1.08	12.96
a-CDs	1.00	18.00	—	_	1.30	18.00
CA-CDs	0.10	9.07	0.90	14.99	1.04	14.62

 Table S4 Fitting parameters of fluorescence decay curve of CDs synthesized with different carbon sources (silane coupling agent is KH-792)

 Table S5 Comparison of PY and QY values of CDs synthesized with different silane coupling agents (carbon source is CA)

CDs	Molecular structure of silane couling agents	n	QY/%	PY/%
540-CDs	$H_{3}CO \xrightarrow{\qquad J \\ NH_{2}} NH_{2}$	-OCH ₃ : 3 -NH ₂ : 1	29.57	46.33
602-CDs	H_3CO-Si CH_3 H_3CO-Si CH_3 NH_2	-OCH ₃ : 2 -NH ₂ : 2	84.53	58.53
CA-CDs	$H_{3}CO - Si - NH_{2}$	OCH ₃ : 3 NH ₂ : 2	97.32	52.56

 Table S6 Elemental analysis of CDs synthesized with different silane coupling agents (carbon source is CA)

CDs	C/%	H/%	N/%	O/%	Si/%
540-CDs	30.09	7.13	10.75	6.54	45.49
602-CDs	38.60	8.51	16.42	6.66	29.81
CA-CDs	36.25	7.98	15.29	14.71	25.77

Fig. S4 Raman spectrum of CDs synthesized with different silane coupling agents (carbon source is CA)

Fig. S5 XPS spectrum of CDs synthesized with different silane coupling agents (carbon source is CA)

CDs	C/%	N/%	O/%	Si/%
540-CDs	54.46	10.73	19.66	15.15
602-CDs	59.94	15.04	14.01	11.00
CA-CDs	56.40	13.22	19.83	10.55

 Table S7 Elemental content analysis of XPS for CDs synthesized with different silane coupling agents (carbon source is CA)

Fig. S6 UV-vis absorption spectroscopy of CDs synthesized with different silane coupling agents (carbon source is CA)

 Table S8 Fitting parameters of fluorescence decay curve of CDs synthesized with different silane coupling agents (carbon source is CA)

CDs	α1	$\tau_1(ns)$	α2	$\tau_2(ns)$	χ^2	(τ) (ns)
540-CDs	1.00	12.97	_	_	1.26	12.97
602-CDs	1.00	17.89	_	_	1.01	17.89
CA-CDs	0.10	9.07	0.90	14.99	1.04	14.62