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Generation of initial compound library G0

The initial compound library G0 is constructed by combining donors with acceptors at preset

connection sites (symbol * is used to denote the connection site). The structures of 30 donors

is shown in Figure S1, and that of 43 acceptors is shown in Figure S2. After the enumeration

of fragments, a random pick routine is used to further restrict the size to 1000.

Figure S1: The donors (D) used as fragments for construction of donor-acceptor (DA)
molecules (* is used to denote the connection site)

S2



Figure S2: The acceptors (A) used as fragments for construction of donor-acceptor (DA)
molecules (* is used to denote the connection site)
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Effect of varied ground state geometry optimization meth-

ods

The difference in ground state geometries calculated by B3LYP/6-31G(d) and PM6-D3 levels

of theory is measured by their root-mean-square deviations (RMSDs). The distribution of

frequency of RMSDs is given in Figure S3. For a total of 72 molecules, only 25% of them have

RMSD values larger than 0.69, hence, from a point of view of probablity, the replacement of

B3LYP/6-31G(d) by PM6-D3 method seems acceptable.
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Figure S3: The distribution of frequency of RMSDs for Sub3.

The effect of varied ground state geometry optimization methods on the HTVS results

have been briefly tested. The evolution of material abundance (ωMA), average number of

aromatic aCH bonds (naCH) and number of accumulated optimal molecules (nacc_opt_mols)

with increase of mutation generation (ng) for Sub3 using B3LYP/6-31G(d) level of theory

as ground state geometry optimization method have been listed in Table S1. As compared

with the semi-empirical method, the investment on a relatively high accuracy computational

one seems to have the effect to speed up the convergence of ωMA. Hence is beneficial for

harvesting more optimal molecules at relatively low ng.
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Table S1: The evolution of material abundance (ωMA), average number of
aromatic aCH bonds (naCH) and number of accumulated optimal molecules
(nacc_opt_mols) with increase of mutation generation (ng) for Sub3 using B3LYP/6-
31G(d) level of theory as ground state geometry optimization method

ng ωMA naCH nacc_opt_mols

0 0.016 18.3 16
1 0.212 16.9 220
2 0.892 12.5 988
3 0.969 11.7 1808
4 0.960 11.8 2637
5 0.962 9.7 3482
6 1.000 8.0 4306
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The evolution of skeleton (generic core) with mutation

generation for Sub3

Figure S4: The evolution of skeleton (generic core) with mutation generation for Sub3 (the
numbers below structures denote the corresponding frequencies).
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Details for training and evaluation of machine learning

model

Table S2: The evolution of cross validation scores, mean and standard deviation
of best ML models with increase of mutation generation (ng) for Sub3

ng scores mean std
0 0.174 0.206 0.180 0.254 0.169 0.197 0.031
1 0.228 0.282 0.170 0.124 0.110 0.183 0.064
2 0.104 0.070 0.094 0.317 0.169 0.151 0.089
3 0.059 0.094 0.093 0.255 0.095 0.119 0.069
4 0.049 0.104 0.048 0.037 0.180 0.084 0.054
5 0.028 0.035 0.040 0.079 0.035 0.043 0.018
6 0.092 0.068 0.032 0.019 0.039 0.050 0.026
7 0.052 0.013 0.017 0.032 0.028 0.029 0.014
8 0.021 0.015 0.032 0.012 0.045 0.025 0.012
9 0.016 0.023 0.021 0.026 0.073 0.032 0.021

The featurization of structures of training molecules is carried out by utilizing the ECFP

fingerprint (size = 2048) computing tool of the DeepChem package. By introducing the

related tools of the open source machine learning Scikit-Learn package, a Random For-

est Regressor (RandomForestRegressor, RFR) from the ensemble module is adopted as the

ML model, Grid Search Cross Validation (GridSearchCV) and relevant score function and

method (cross_val_score and neg_mean_squared_error) as tools for model selection, sim-

ple imputer (SimpleImputer) as data imputer, and a min max scaler (MinMaxScaler) for

data scaling. The following grid parameters have been used for the Grid Search Cross Vali-

dation step: ‘bootstrap’: [ True, False ], ‘n_estimators’: [ 3, 10, 30, 100 ], ‘criterion’: [“mse”,

“mae”], ‘max_depth’: [ 2, 5, 10, 50 ], ‘max_features’: [“auto”, “sqrt”, “log2”]

The ECFP fingerprints as the X featurization vector, and the computed energy gaps

(∆EST ) as the Y object vector. The X;Y is fed to the RFR model, by applying the Grid-

SearchCV with above grid parameters, the cross_val_score method and 5-fold cross valida-

tion, the best ML model (best_reg) is screened out from the grid search hyper-parameter

space. The best_reg is retrained with the training data, and is further evaluated by a 5-fold
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cross validation using the same scoring method (neg_mean_squared_error). The newly

learned ML model will be used for subsequent prediciting property of unseen molecules in

the original compound library (ng keeps unchanged).

To have a taste on the relative accuracy of the ML models, the related data for Sub3

has been given in Table S2. Obviously, the mean and standard deviation are small enough,

hence the ML model could be safely used to predict the energy gaps of unseen molecules

with considerable confidence.
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Optimal molecules sorted by SAS

Figure S5: The structures of 9 optimal molecules with lowest SAS for all mutations except
Sub2 (each row corresponds to a mutation, row 1 → Sub1)

The (energy gap) optimal molecules for all mutations have been sorted by Synthetic

Accessibility Scores from low to high, so as to give recommendation for TADF materials

candidate. The structures of 9 molecules with lowest SAS for all mutations except Sub2

have been depicted in Figure S5. Notably, duplication between different rows exists due to

the origin setup of the computational road map.
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Maximum Similarity Pairing Rule

The calculation of group fingerprint similarity (∆MSPR) is based on the following algorithm,

which we name it the Maximum Similarity Pairing Rule (MSPR). Suppose we have two

compound libraries LA and LB, which are represented by two SMILES-based string lists

SMLA and SMLB.

(1.) Assume their sizes are m and n, and m ≤ n. If not, we exchange A and B.

(2.) Check whether there are intersection elements between SMLA and SMLB or not? If

yes, the two libraries SMLA and SMLB can be represent by SMLA = SMLIntersection +

SMLA1 and SMLB = SMLIntersection + SMLB1. Set the size of SMLIntersection is p. Now,

a mapping has been established between the intersection parts of the two libraries (one A

molecule versus one B molecule).

(3.) Introducing ECFP fingerprint method to represent molecules and adopting Tanimoto

metric, we can construct a (m - p) × (n - p) similarity matrix C whose matrix element cij

is defined as the Tanimoto similarity between SMLA1(i) and SMLB1(j).

(4.) Find the larget element of the similarity matrix C, assume it is ckl, a row exchange (k to

1) followed by column exchange (l to 1) would shift the larget element to the (1,1) position.

At the same time, the exchange (k to 1) positions is applied on a (m - p) index list to trace

the change of order of molecules in SMLA1. Similar manipulation applies to index list of

SMLB1.

(5.) Find the larget element of the submatrix for the old C matrix, which is constructed by

deleting the (1,1) element containing row and column. Shift that element to (2,2) position,

and apply similar manipulation on index lists.

(6.) Repeat step (5) until the submatrix containing only 1 element.

(7.) Take out the main diagonal elements of matrix C as diagonal matrix D. The ∆MSPR is

calculated by Eq 1

∆MSPR =
p ∗ 1.0 + Σidii

m
(1)
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By applying the algorithm, the two libraries succeed in building a mapping, which maps

m molecules in A library with m molecules in B library (one versus one). Notably, the

algorithm may not be numerical stable when degeneracy exists. Fortunately, for the cases

we studied, it seems working well.
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Optimal Generic Cores for Studied Mutations As ng =

9

The optimal skeletons (generic cores) for studied mutations as ng = 9 have been depicted in

Figure S6.

Figure S6: The optimal skeletons (generic cores) for studied mutations as ng = 9
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