Supplementary Information

Second-phase Induced Fluorescence Quenching in Non-equivalent

Substituted Red Phosphors

Jun Chen, ^a XianfengYang,^c Chunyan Jiang,^a Yunfeng Wang, ^{*ab} Lei Zhou^{*a} and Mingmei Wu^{*a}

^a School of Chemistry/School of Marine Science/School of Chemical Engineering and Technology, Sun Yat-Sen University, Guangzhou 510275/Zhuhai 519082, P. R. China

^b School of Information Engineering, Nanyang Institute of Technology, Nanyang 473004, P. R. China

^c Analytical and Testing Center, South China University of Technology, Guangzhou, 510640, P. R. China

* Corresponding authors. Email addresses: <u>ceswmm@mail.sysu.edu.cn</u> (M. M. Wu); <u>zhoul8@mail.sysu.edu.cn</u> (L. Zhou); <u>wangyunfeng@nyist.edu.cn</u> (Yunfeng Wang)

Fig. S1 XRD pattern and standard card of the as-prepared Eu₂W₂O₉.

Fig. S2 Magnified XRD patterns with the range of 26.2-29.3°.

Fig. S3 EDX spectrum of $SrWO_4$:20%Eu³⁺, the scanning point shows matching elements including Sr, W, Eu, and O.

Fig. S4 HR-TEM image of region A and B in part 1, demonstrating the monoclinic crystalline $Eu_2W_2O_9$ possessing lattice fringes of 0.2613 nm, which corresponds to the (032) crystallographic planes.

Fig. S5 The TEM image of region C in part 2, demonstrating the typically tetragonal crystalline $SrWO_4$ host lattice with the fringe of 0.4958nm, which corresponds to the crystallographic plane of (101).

Fig. S6 (a)-(c) Elemental mapping, (e) SEM image, and (f) EDS of the $SrWO_4$:20%Eu³⁺ phosphor, the measurement results indicate the consistent atomic ratios of elementary composition in the as-prepared sample.

Fig. S7 The diffuse reflection spectra of un-doped and 20%Eu³⁺-doped SrWO₄ sample.

Fig. S8 Raman spectrum of the as-prepared $SrWO_4:20\%Eu^{3+}$ phosphor, which demonstrates the host lattice with the largest phonon threshold of 921 cm⁻¹.

Fig. S9 the emission lines and histogram of integral intensity on as-prepared $SrWO_4:20\%Eu^{3+}$ and $Eu_2W_2O_9$ samples under 394 nm excitation.

Fig. S10 plot of $\log(I/x)$ vs. $\log(x)$ for the as-prepared SrWO₄:xEu³⁺ phosphor, x = 20%, 30%, and 40%.

Fig. S11 The decay curves with first order exponential fitting of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition ($\lambda_{em} = 612 \text{ nm}$) and ${}^{5}D_{1} \rightarrow {}^{7}F_{1}$ transition ($\lambda_{em} = 535 \text{ nm}$) in SrWO₄: *x*Eu³⁺ phosphors under 394 nm excitation.

Fig. S12 The decay curves of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition ($\lambda_{em} = 612 \text{ nm}$) in SrWO₄: 20%Eu³⁺ and Eu₂W₂O₉ phosphors under 394 nm excitation.

Fig. S13 The CIE chromaticity coordinates of $SrWO_4$: 20%Eu³⁺ with the varying temperature range of 300-500 K, which displaying stable emitting colour in high temperature.

Fig. S14 Temperature-dependent spontaneous decay rate of (a) ${}^{5}D_{1} \rightarrow {}^{7}F_{1}$ transition (λ_{em} =535 nm) and (c) ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition (λ_{em} =612 nm) in SrWO₄: 20%Eu³⁺ sample.

Fig. S15 The as-encapsulated red LED and WLED device by assembling SrWO₄:20%Eu³⁺ YGAB: Tb³⁺, BAM: Eu²⁺ phosphors and near-UV 377nm LED chip.

Traditional concentration quenching mechanism

The concentration quenching mechanism can be calculated by the decrease with the increasing rare-earth doping concentration. The relation between the emission intensity and Eu^{3+} doping concentration is analyzed by the following expression:¹

$$\log\left(\frac{l}{x}\right) = -\frac{s}{d}\log\left(x\right) + \log\left(\frac{s}{d}\right)$$

where I represents the emission intensity, x represents the Eu³⁺ concentration. s=6 is associated with dipole-dipole interaction, s=8 is associated with dipole-quadrupole interaction, s=10 is associated with quadrupole-quadrupole interaction. d represents the dimension of compounds, the d value is 3 in general due to the energy transfer of Eu³⁺ in the large-scale micrometer material. f is a constant which is independent of doping concentration. By rough calculation in Fig. S2, the slope of the fitting line is around -1.58, s is determined to be 4.74 approximating to 6. It illustrates the dipole-dipole interaction dominates in the concentration quenching mechanism of SrWO₄:xEu³⁺ phosphors.

The colour purity

The colour purity of all $SrWO_4$: xEu^{3+} samples are calculated by the following equation: ¹

colour purity =
$$\frac{\sqrt{(x-x_i)^2 - (y-y_i)^2}}{\sqrt{(x_d-x_i)^2 - (y_d-y_i)^2}} \times 100\%$$

where (x, y), (x_d, y_d) and (x_i, y_i) are the CIE coordinates of the as-prepared sample, dominant wavelength and white illumination, respectively.

Thermal activation energy

To further understand the quenching behaviour of $SrWO_4$: Eu^{3+} phosphors, the thermal activation energy can be figure out by using the following equation to fit the data of emission intensity:¹

$$I = \frac{I_0}{1 + \alpha exp(-\Delta E/kT)}$$

where I_0 represents the emission intensity constant, α represents a rate constant on thermally activated escape, ΔE represents the required thermal activation energy on generating temperature quenching, k represents the Boltzmann constant, and Trepresents the thermodynamic temperature, respectively. From the fitting result in top right corner of Fig. 10, thermal activation energy of SrWO₄: 20%Eu³⁺ is 0.27 eV, which is higher than the previous reports, for example, NaBiF₄:Eu³⁺ (0.24 eV), Li₃Gd₃Te₂O₁₂:Eu³⁺ (0.22 eV), K₂Gd(PO₄)(WO₄):Eu³⁺ (0.19 eV) and Ba₆Gd₂Ti₄O₁₇: Eu³⁺(0.144 eV).²⁻⁵

The spontaneous decay rates

Based on the multi-phonon relaxation theory, the total spontaneous decay rates (SDRs) of ${}^{5}D_{1}$ and ${}^{5}D_{0}$ can be written as follows:⁶

$$W_{Total} = W_R + W_{NR}(0)(1 - exp(-\hbar\omega/kT))^{-\Delta E/\hbar\omega}$$

where W_{Total} is the total SDR, W_R is the radiative transition rate, $W_{NR}(0)$ is the nonradiative transition rate at 0K, $\hbar\omega$ is the average phonon energy of host material, and ΔE is the energy gap dependence of the transfer probability. By fitting, it is calculated that $W_R = 68.94 \text{ ms}^{-1}$ and $W_{NR}(0) = 3.07 \text{ ms}^{-1}$ for ${}^{5}\text{D}_{1}{}^{-7}\text{F}_{1}$, $W_R = 1.86 \text{ ms}^{-1}$ and $W_{NR}(0) = 0.04 \text{ ms}^{-1}$ for ${}^{5}\text{D}_{0}{}^{-7}\text{F}_{2}$, the $W_{NR}(0)$ of ${}^{5}\text{D}_{0}{}^{-7}\text{F}_{2}$ is much smaller than that of ${}^{5}\text{D}_{1}{}^{-7}\text{F}_{1}$. This obvious difference originates from the small gap between ${}^{5}\text{D}_{1}$ to ${}^{5}\text{D}_{0}$ energy level and the serious phonon-assisted process.

References

- 1 H. Guo, X. Huang, Y. Zeng, J. Alloy. Compd., 2018, 741, 300-306.
- 2 P. Du, X. Huang, J. S. Yu, Chem. Eng. J., 2018, 337, 91-100.
- 3 X. Huang, B. Li, H. Guo, Ceram. Int., 2017, 43, 10566-10571.

- 4 H. Deng, Z. Gao, N. Xue, J. H. Jeong, R. Yu, J. Lumin., 2017, 192, 684-689.
- 5 J. Li, Q. Liang, Y. Cao, J. Yan, J. Zhou, Y. Xu, L. Dolgov, Y. Meng, J. Shi, M. Wu, ACS Appl. Mater. Interfaces, 2018, 10, 41479-41486.
- 6 Y. Wang, W. Xu, S. Cui, S. Xu, Z. Yin, H. Song, P. Zhou, X. Liu, L. Xu, H. Cui, Nanoscale, 2015, 7, 1363-1373.