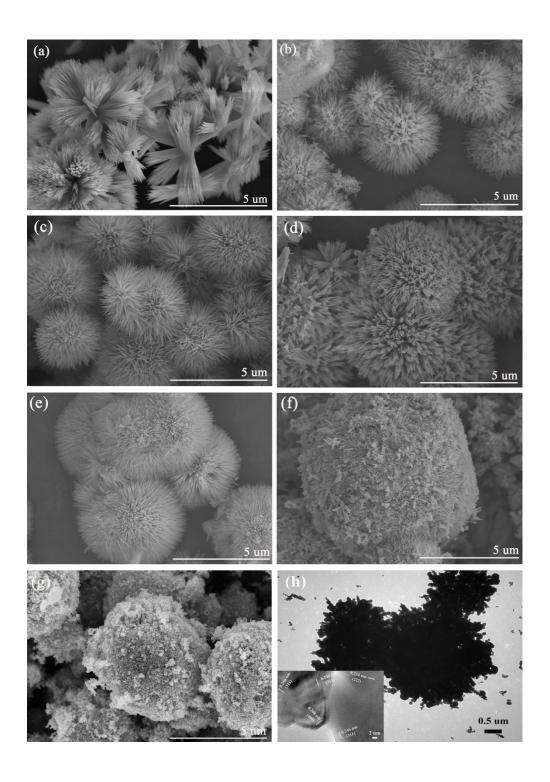
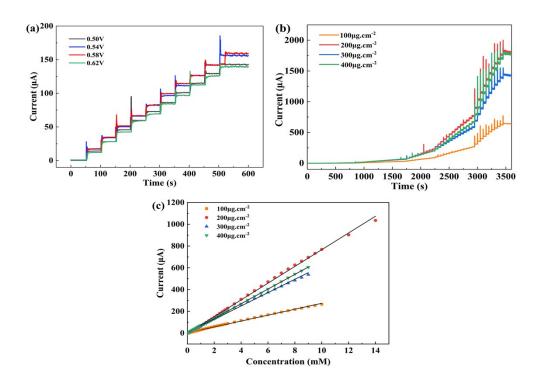
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supporting Information:

Facile preparation of urchin-like $NiCo_2O_4$ microspheres for efficient hydrogen peroxide detection


Jiaojiao Jiang, Zhixuan Zhang, Chong Yang, Rui Wang, Zhouling Wu*

Department of Food Quality and Safety, School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, P. R. China.


* Corresponding authors.

E-mail: WuZhouLing90@163.com

Fig. S1 SEM of NiCo₂O₄ microspheres precursors at different reaction time were 2 h (a), 4 h (b), 6h (c), 8 h (d) and 10 h (e), respectively. SEM results of precursor (f) and NiCo₂O₄ solid microsphere (g) without adding ionic liquid. (h) TEM image of urchin-like NiCo₂O₄ microspheres after the fifteen successive test (inset: the HRTEM image).

Fig.S2 (a) Amperometric responses of $NiCo_2O_4/RDE$ at different applied potentials. (b) Amperometric responses of $NiCo_2O_4/RDE$ with different loadings at applied potential of 0.58 V and its corresponding calibration plot (c).

 $\label{eq:table S1} \textbf{Table S1} \mbox{ Performances comparison with different catalyst loadings in electrochemical H_2O_2 detection.}$

Loading of catalyst	Linear ranges	Sensitivity	Detection Limit
(μg·cm ⁻²)	(mM)	(μA·mM ⁻¹ cm ⁻²)	(μM)
100	0.0~10.0	138.62	0.144
200	0.0~14.0	392.50	0.050
300	0.0~9.0	312.86	0.063
400	0.0~9.0	343.98	0.058