Supporting file for

Is Degradation of Dyes Even Possible Without Using 'Photocatalyst'? – A Detailed Comparative Study

Subhadeep Sen^a, Chanchal Das^a, Narendranath Ghosh^b, Nabojyoti Baildya^c, Sumantra Bhattacharya^d, Moonis Ali Khan^e, Mika Sillanpää^{f,g}, Goutam Biswas^a*

^aDepartment of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, 736101, India.

^bDepartment of Chemistry, University of Gour Banga, Mokdumpur, Malda-732103, India.

^cDepartment of Chemistry, University of Kalyani, Kalyani 741235, India

^dDepartment of Chemistry, National Institute of Technology Sikkim. Barfung Block, Ravangla, South Sikkim, Sikkim, PIN-737139, India.

^eChemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.

^gDepartment of Biological and Chemical Engineering, Aarhus University, Aarhus C, Denmark ^gDepartment of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa. *Corresponding Author: Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India 736101; Email address: goutam@cbpbu.ac.in (G. Biswas).

Table of contents:

1.	Supplementary Figures	2
2.	Supplementary Tables	3-4

Fig. S1. Mass spectra after degradation of (a) MG and (c) CV dyes; (b) and (d) are the structures obtained after degradation of MG and CV, respectively [1–3].

Table S1

Absorption wavelengths of MG and CV in different functionals in water.

Dye Name	Functional	Basis Set	λ _{max} (nm)	Experiment (λ_{max}, nm)	
Malachite Green	B3LYP	6-31G+(d,p)	520	617	
	PBEPBE		570	017	
Crystal Violet	B3LYP	6-31G+(d,p)	509	590	
	PBEPBE	(4)P)	573		

Table S2Various properties related to absorption of MG and CV at B3LYP/6-31G+(d,p) level of theory in water.

Dye	λ _{max} (nm)	Excitation Energy (eV)	Oscillator strength	Orbital involved and % contribution
	570	2.1767	0.8617	H→L (100%)
MG	462	2.6821	0.2799	H-1→L (94%)
	408	3.0405	0.0011	H-2→L (98%)
	573.1	2.1632	0.6768	H-1 →L (46%), H →L (54%)
CV	573.0	2.1636	0.6774	H-1 →L (54%), H →L (46%)
	377	2.9353	0.0005	H-4->LUMO (94%)

Table S3

Tabulated data for electrochemical[4], computational value of the CV and MG dyes.

D	Cyclic	Cyclic Voltammetry Data Computed I		Computed Data		ıta
Dye	E _{ox} (eV)	E _{red} (eV)	ΔE _{CV} (eV)	HOMO (eV)	LUMO (eV)	Band Gap (eV)
CV	-5.7	-3.79	1.91	-5.72	-3.04	2.68
MG	-5.66	-4.04	1.62	-5.82	-3.29	2.53

Reference:

- [1] S. Shanmugam, P. Ulaganathan, K. Swaminathan, S. Sadhasivam, Y.-R. Wu, Enhanced biodegradation and detoxification of malachite green by Trichoderma asperellum laccase: Degradation pathway and product analysis, International Biodeterioration & Biodegradation. 125 (2017) 258–268. https://doi.org/10.1016/j.ibiod.2017.08.001.
- [2] Q. Xu, H. You, Y. Jia, Y. Yu, H. Li, Aquaculture drug degradation in persulfate by PANI-based microparticles controlled via ultrasonic field: Forced motion of "burning hot micromotors," Chemosphere. 275 (2021) 130098. https://doi.org/10.1016/j.chemosphere.2021.130098.
- [3] Y.-R. Huang, Y. Kong, H.-Z. Li, X.-M. Wei, Removal of crystal violet by ultraviolet/persulfate: Effects, kinetics and degradation pathways, Environmental Technology & Innovation. 18 (2020) 100780. https://doi.org/10.1016/j.eti.2020.100780.
- [4] C.H. Ng, C.A. Ohlin, B. Winther-Jensen, Characterisation of a series of triarylmethane dyes as light harvesters for photo-electrochemical systems, Dyes and Pigments. 115 (2015) 96–101. https://doi.org/10.1016/j.dyepig.2014.12.016.