# Supporting information

## Engineering of appropriate pore size combined with sulfonic functionalization in a Zr-MOF with reo topology for the ultrahigh removal of cationic malachite green dye from an aqueous medium

My V. Nguyen,<sup>\*,a</sup> Hung N. Nguyen,<sup>a</sup> Tuyet A. T. Nguyen<sup>a</sup> and Khang M. V. Nguyen<sup>a</sup> <sup>a</sup> Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam.

\*To whom correspondence should be addressed: <u>mynv@hcmue.edu.vn</u>

### **Table of Contents**

| Section S1  | Synthesis of materials                                                                        | <b>S</b> 3 |
|-------------|-----------------------------------------------------------------------------------------------|------------|
| Section S2  | The modelling structure of DUT-52                                                             | S4         |
| Section S3  | <sup>1</sup> H-NMR analyses of digested DMA⊂Reo-MOF-1, and digested H <sup>+</sup> ⊂Reo-MOF-1 | S5-S6      |
| Section S4  | Powder X-ray diffraction patterns (PXRD)                                                      | <b>S</b> 7 |
| Section S5  | Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC) curves           | S8-S9      |
| Section S6  | $N_2$ adsorption measurement at 77 K                                                          | S10        |
| Section S7  | Scanning electron microscopy (SEM) and energy-dispersive X-ray mapping (EDX-mapping) analysis |            |
| Section S8  | Transmission electron microscopy (TEM) analysis                                               | S13-S14    |
| Section S9  | Adsorption studies                                                                            | S15-S19    |
| Section S10 | The stability of H⁺⊂Reo-MOF-1 during the adsorption and desorption process of MG              | S20-S21    |

### Section S1. Synthesis of the materials

### Synthesis of 4-sulfonaphthalene-2,6-dicarboxylic acid (H<sub>3</sub>SNDC) linker

2,6-naphthalenedicarboxylic acid (H<sub>2</sub>NDC) (1 g, 4.63 mmol) was dissolved in a mixture containing 1.75 mL of oleum (SO<sub>3</sub> in concentrated H<sub>2</sub>SO<sub>4</sub>, 25 wt%) and 3.25 mL of concentrated H<sub>2</sub>SO<sub>4</sub>. The mixture was then introduced into a 50 mL glass flask and stirred at 130 °C for 24 h. The product was cooled to room temperature and added to 100 mL of distilled water, filtered and precipitated by 25 mL of concentrated HCl (37 wt%). Finally, the product was filtered, washed with 50 mL of concentrated HCl, and dried at 80 °C under a dynamic vacuum for 24 h to obtain a pure white solid with 80% yield, termed H<sub>3</sub>SNDC.

### Synthesis of DUT-52

A mixture of ZrCl<sub>4</sub> (230 mg, 0.986 mmol) and H<sub>2</sub>NDC (216 mg, 1.000 mmol) was added to a 50 mL Pyrex vial containing DMF (20 mL) and acetic acid (1.1 mL). The mixture was then ultrasonicated in 10 min and heated at 120 °C for 48 h. Next, the solid was centrifugated, washed with DMF for 48 h (30 mL per day), and exchanged with MeOH for 48 h (30 mL per day). Finally, the product was collected, dried, and activated under vacuum at 80 °C for 24 h to obtain a white powder, namely DUT-52.

### Section S2. The modelling structure of DUT-52



**Figure S1.** The structure of DUT-52 viewing along the [0 0 1] plane. Atom colors: Zr, green polyhedra; C, black; O, red; all H atoms are omitted for clarity. The pore window and cage size of the material is calculated in the CrystalMarker software.

Section S3. <sup>1</sup>H-NMR analyses of digested DMA $\subset$ Reo-MOF-1, and digested H<sup>+</sup> $\subset$ Reo-MOF-1



**Figure S2.** <sup>1</sup>H-NMR analysis of digested DMA⊂Reo-MOF-1.



**Figure S3.** <sup>1</sup>H-NMR analysis of digested H<sup>+</sup>⊂Reo-MOF-1.





**Figure S4.** PXRD patterns of simulated structure with reo topology (black) in comparison with H<sup>+</sup>⊂Reo-MOF-1 soaked in water for 2 months.

**Section S5.** Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC) curves



Figure S5. TGA-DSC curves of DMAcReo-MOF-1 in dry air (a), and in argon (b).



Figure S6. TGA-DSC curves of H<sup>+</sup>⊂Reo-MOF-1 in dry air (a), and in argon (b).



Figure S7. TGA-DSC curves of MG⊂Reo-MOF-1 in dry air (a), and in argon (b).



Section S6.  $N_2$  adsorption measurement at 77 K

| P/P₀ range                                            | 0.057 – 0.085 |
|-------------------------------------------------------|---------------|
| Correlation coefficient                               | 0.9999        |
| С                                                     | 102.92        |
| Q <sub>m</sub> (cm <sup>3</sup> g <sup>-1</sup> STP)  | 8.0970        |
| Molecular cross-sectional area (S / nm <sup>2</sup> ) | 0.1620        |
| BET surface area (m <sup>2</sup> g <sup>-1</sup> )    | 35.252        |

**Figure S8**. N<sub>2</sub> isotherm and pore size distribution of DMA $\subset$ Reo-MOF-1 and H<sup>+</sup> $\subset$ Reo-MOF-1 at 77 K.

**Section S7.** Scanning electron microscopy (SEM) and energy-dispersive X-ray mapping (EDX-mapping) analysis



**Figure S9**. SEM images of H<sup>+</sup> $\subset$ Reo-MOF-1 at different scale bars of 5.00 µm, 2.00 µm, 1.00 µm and 500 nm, respectively.



**Figure S10**. Elemental mapping by SEM-EDX of H<sup>+</sup>⊂Reo-MOF-1.

Section S8. Transmission electron microscopy (TEM) analysis



H⁺⊂Reo-MOF-1 before adsorption



**Figure S11**. TEM images of H<sup>+</sup>⊂Reo-MOF-1 before adsorption of MG at different scale bars of 200, 100, and 50 nm, respectively.

## H⁺⊂Reo-MOF-1 after desorption





**Figure S12**. TEM images of H<sup>+</sup>⊂Reo-MOF-1 after desorption of MG at different scale bars of 200, 100, and 50 nm, respectively.

### Section S9. Adsorption studies

#### Adsorption isothermal models

The nonlinear forms of the Langmuir and Freundlich are represented by the equations (1) and (2):

$$q_{e} = \frac{q_{m}.K_{L}.C_{e}}{1+K_{L}.C_{e}}$$
(S1)  
$$q_{e} = K_{F}.C_{e}^{1/n}$$
(S2)

Where C<sub>e</sub> (mg L<sup>-1</sup>) and q<sub>e</sub> (mg g<sup>-1</sup>) are the MG concentration and adsorption capacity at equilibrium, respectively, q<sub>m</sub> (mg g<sup>-1</sup>) is the theoretical maximum capacity of the MG adsorption. K<sub>L</sub> (L mg<sup>-1</sup>) and K<sub>F</sub> (mg g<sup>-1</sup> (L g<sup>-1</sup>)<sup>1/n</sup>) display the constants of Langmuir and Freundlich, respectively. 1/n value symbolizes the adsorption capacity index of Freundlich isotherm.

The nonlinear types of the Temkin and Dubinin–Radushkevich (DR) are described by the equations (3) and (4):

$$q_{e} = \frac{RT}{\beta} \ln(k_{T}C_{e})$$
(S3)  
$$q_{e} = q_{m}.e^{-K_{DR}.\epsilon^{2}}$$
(S4)

Where *R* is the gas constant,  $\beta$  and  $k_T$  are the constant of adsorption heat and the constant of Temkin, respectively, and *T* is the adsorption temperature.  $\varepsilon$  is a constant,  $k_{DR}$  and *C* are the constant of DR isotherm and the adsorption energy per adsorbent molecule, respectively.

The separation factor  $(R_{L})$  is utilized by equation (5):

$$R_{L} = \frac{1}{1 + K_{L}C_{o}}$$
(S5)

Where  $C_0$  and  $K_L$  are the initial concentration of MG and the constant of Langmuir, respectively.

### Adsorption kinetics

The pseudo first order, pseudo second order, and intra-particle diffusion models are displayed by the equations (6), (7), and (8):

$$q_t = q_e.(1 - e^{-k_1 t})$$
 (S6)

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
(S7)

$$q_t = k_i t^{1/2} + c$$
 (S8)

Where  $q_t (mg g^{-1})$  and  $q_e (mg g^{-1})$  are the MG uptake amounts at t and equilibrium time, respectively.  $k_1 (min^{-1})$ ,  $k_2 (g mg^{-1} min^{-1})$ , and  $k_i (g mg^{-1} min^{-1})$  are the rate constants of pseudo first order, pseudo second order, and intra-particle diffusion models, and c is the constant indicating the thickness of the boundary layer.



**Figure S13.** The relationship between the absorbed intensity (red dots) of MG and different concentrations of 0 - 18 mg  $L^{-1}$  by linear fitting.



**Figure S14.** UV-Vis spectra of MG dye after absorbed onto H<sup>+</sup> $\subset$ Reo-MOF-1 at the intervals of 0, 5, 10, 15 and 20 min, respectively. Herein, 5 mg H<sup>+</sup> $\subset$ Reo-MOF-1 was introduced into 100 mL of MG solution (18 mg L<sup>-1</sup>) and stirred at room temperature with the mentioned intervals.



**Figure S15**. Data fitting with the Temkin adsorption isotherm model of the MG adsorption onto H<sup>+</sup>⊂Reo-MOF-1.



**Figure S16**. Data fitting with the intra-particle diffusion model of the MG adsorption onto  $H^+ \subset \text{Reo-MOF-1}$ .

Section S10. The stability of H<sup>+</sup>⊂Reo-MOF-1 during the adsorption and desorption process of MG



**Figure S17.** FT-IR spectrum of H<sup>+</sup> $\subset$ Reo-MOF-1 before adsorption of MG (blue) in comparison with FT-IR spectrum of H<sup>+</sup> $\subset$ Reo-MOF-1 after desorption of MG (purple).



**Figure S18.** PXRD pattern of H<sup>+</sup> $\subset$ Reo-MOF-1 before adsorption of MG and immersed in water (black), and activated MG $\subset$ Reo-MOF-1 (red) as compared to the experimental pattern from the subjecting H<sup>+</sup> $\subset$ Reo-MOF-1 after desorption of MG.