Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Electronic Supporting Information for the manuscript

A Computational Insight into Mechanistic Overview of Water-Exchange Kinetics and Thermodynamic Stabilities of Bis and Tris-Aquated Complexes of Lanthanides[†]

Niharika Keot^a and Manabendra Sarma*^a

^a Department of Chemistry, Indian Institute of Technology Guwahati 781039, India *Email: msarma@iitg.ac.in

Table of Contents

	List of Tables	Page
Table S1	Binding energy values ($\Delta E_{TOTAL} = E_{COMPLEY} - E_{LCAND} - E_{CMUD}$) and relative	1NO. 5
Table 51	binding energy (AE _{DEI}) values (in kcal/mol) of the chosen complexes were	5
	calculated using TPSSh/6-31G(d p)/SCRECP level of theory	
Table S2	Binding energy values ($\Delta E_{TOTAL} = E_{COMPLEX} - E_{LOUPLE} - E_{COMPLEX}$) and relative	5
Table 52	binding energy (AE ₂) values (in keel/mol) of the chosen complexes using	5
	different density functionals and basis sets with LCRECP level of theory.	
Table 62	Dend length suchase of the [Cd(tree)(ILO)] assured as using LCDECP and	6
Table 55	Bond length values of the [Gd(tpaa)(H_2O) ₂] complex using LCRECP and CODECD with (21C(1 a) for H C N O and TDSCh basel of the area	0
	SCRECP with 6-31G(d,p) for H, C, N, O, and TPSSh level of theory.	-
Table S4	Bond length values of the $[Gd(peada)(H_2O)_2]^2$ complex using LCRECP and	6
	SCRECP with 6-31G(d,p) for H, C, N, O, and TPSSh level of theory.	
Table S5	Bond length values of the $[Gd(dpaa)(H_2O)_3]$ complex using LCRECP and	6
	SCRECP with 6-31G(d,p) for H, C, N, O, and TPSSh level of theory.	
Table S6	Bond length (Å) values of the [Gd(cbda)(H ₂ O) ₃] complex using LCRECP and	7
	SCRECP with 6-31G(d,p) for H, C, N, O, and TPSSh level of theory.	
Table S7	Thermodynamic parameters (kcal/mol, scheme 1) were obtained with	7
	different density functionals and basis sets for [Gd(cbda)] and [Gd(dpaa)]	
	complexes.	
Table S8	Thermodynamic parameters (kcal/mol, scheme S1) were obtained with	7
	different density functionals and basis sets for [Gd(peada)] ⁻ and [Gd(tpaa)]	
	complexes.	
Table S9	Ln-O(w) bond lengths (Å) of [Ln(cbda)(H ₂ O) ₃].6H ₂ O complex using	8
	SCRECP/TPSSh/6-31G(d,p) level of theory.	
Table S10	Ln-O(w) bond lengths (Å) of [Ln(peada)(H ₂ O) ₂] ⁻ .4H ₂ O complex using	8
	SCRECP/TPSSh/6-31G(d,p) level of theory.	
Table S11	Bond length values of the complex [Gd(cbda)(H ₂ O) ₃].6H ₂ O using LCRECP	8-9
	with different density functionals and basis sets.	
Table S12	Bond length values of the complex [Gd(peada)(H ₂ O) ₂].6H ₂ O using LCRECP	9-10
	and with different DFT methods and basis sets.	

Table S13	Electron density (ρ_{BCP}), electron localization function (ELF), and Laplacian of	10
	electron density $(\nabla^2 \rho)$ at the Ln-O(w) bond critical points calculated for the	
	[Ln(cbda)(H ₂ O) ₃]·6H ₂ O system (Ln=La-Lu) at the TPSSh/SCRECP/6-	
	31G(d,p) theoretical level.	
Table S14	Electron density (ρ_{BCP}), electron localization function (ELF), and Laplacian of	10
	electron density $(\nabla^2 \rho)$ at the Ln-O(w) bond critical points calculated for the	
	[Ln(peada)(H ₂ O) ₃] ⁻ .4H ₂ O system (Ln=La-Lu) at the TPSSh/SCRECP/6-	
	31G(d,p) theoretical level.	
Table S15	Electron density (ρ_{BCP}), electron localization function (ELF), and Laplacian of	11
	electron density $(\nabla^2 \rho)$ at the Ln-O(w) critical points calculated for the	
	[Gd(cbda)(H ₂ O) ₃].6H ₂ O system at the LCRECP with different density	
	functionals and basis sets.	
Table S16	Electron density (ρ_{BCP}), electron localization function (ELF), and Laplacian	12
	of electron density $(\nabla^2 \rho)$ at the Ln-O(w) critical points calculated for the	
	$[Gd(peada)(H_2O)_2]$.4H ₂ O system at the LCRECP and different density	
Table S17	Calculated Gd-O(w) bond length electron density (o, au) electron localization	16
14010 017	function (ELF), and k_{ex}^{298} value of [Gd(cbda)(H ₂ O) ₃]·6H ₂ O complex using	10
	LCRECP and different density functionals and basis sets.	
Table S18	Calculated Gd-O(w) bond length, electron density (ρ , au), electron localization	16-17
	function (ELF), and k_{ex}^{298} value of [Gd(peada)(H ₂ O) ₂]·4H ₂ O complex using	
Table S10	LCRECP and different density functionals and basis sets.	17
Table S19	Activation energy values of $[Gu(CDda)(H_2O)_3].0H_2O$ and $[Gu(CDda)(H_2O)(H_2O)(H_2O)(H_2O)(H_2O)(H_2O)(H_2O)(H_2O)(H_2O)$	1/
	$[Ou(peaua)(112O)_2]$.4112O complexes calculated using SCREEF/1FSSI/O 31G(d p) theoretical level	
Table S20	Bonding behavior of the $[Gd(chd_2)(H_2O)_2] \in H_2O$ and $[Gd(need_2)(H_2O)_2]^T$	17
1 abic 520	$4H_2O$ complexes from ETS analysis (in kI/mol)	17
Table S21	Cartesian coordinates $(Å)$ of $[Gd(tnaa)(H_2O)_2]$ complex (without explicit	18-19
	water molecules) optimized at TPSSh/LCRECP/ $6-31G(d p)$ aqueous solution	10 17
	(0 Imaginary Frequency).	
Table S22	Cartesian coordinates (Å) of $[Gd(dpaa)(H_2O)_3]$ complex (without explicit	19-20
	water molecules) optimized at TPSSh/LCRECP/ $6-31G(d,p)$, aqueous solution	17 20
	(0 Imaginary Frequency).	
Table S23	Cartesian coordinates (Å) of [Gd(cbda)(H ₂ O) ₃].6H ₂ O complex, optimized at	20-22
	TPSSh/LCRECP/6-31G(d,p), aqueous solution (0 Imaginary Frequency).	
Table S24	Cartesian coordinates (Å) of [Gd(cbda)(H ₂ O) ₃].6H ₂ O complex, optimized at	22-24
	TPSSh/SCRECP/6-31G(d,p), aqueous solution (0 Imaginary Frequency).	
Table S25	Cartesian coordinates (Å) of [Gd(peada)(H ₂ O) ₂] ⁻ .4H ₂ O complex, optimized at	24-25
	TPSSh/LCRECP/6-31G(d,p), aqueous solution (0 Imaginary Frequency).	
Table S26	Cartesian coordinates (Å) of [Gd(peada)(H ₂ O) ₂] ⁻ .4H ₂ O complex, optimized at	25-27
	TPSSh/SCRECP/6-31G(d,p), aqueous solution (0 Imaginary Frequency).	
Table S27	Cartesian coordinates (Å) of [Gd(cbda)(H2O)3].6H2O complex, corresponding	27-28
	to Gd-O36(w) bond optimized at TPSSh/LCRECP/6-31G(d,p), aqueous	
	solution (1 Imaginary Frequency).	

Table S28	Cartesian coordinates (Å) of [Gd(cbda)(H ₂ O) ₃].6H ₂ O complex, corresponding	28-30
	to Gd-O39(w) bond optimized at TPSSh/LCRECP/6-31G(d,p), aqueous	
	solution (1 Imaginary Frequency).	
Table S29	Cartesian coordinates (Å) of [Gd(cbda)(H ₂ O) ₃].6H ₂ O complex, corresponding	30-32
	to Gd-O47(w) bond optimized at TPSSh/LCRECP/6-31G(d,p), aqueous	
T-11-520	solution (1 Imaginary Frequency).	22.22
Table S30	Cartesian coordinates (A) of $[Gd(peada)(H_2U)_2].4H_2U$ complex, corresponding to Gd $O(40(w))$ bond optimized at TPSSh/L CPECP/6 31G(d p)	32-33
	aqueous solution (1 Imaginary Frequency)	
Table S31	Cartesian coordinates $(Å)$ of $[Gd(peada)(H_2O)_2]^- 4H_2O$ complex	33-35
	corresponding to Gd-O43(w) bond optimized at TPSSh/LCRECP/6-31G(d p)	00 00
	aqueous solution (1 Imaginary Frequency)	
Table \$32	Cartesian coordinates (\mathring{A}) of [Gd(chda)(HaO)a] 6HaO complex corresponding	35-36
1 abie 552	to Gd $O36(w)$ bond optimized at TPSSh/SCRECP/6 31G(d p) aqueous	35-50
	solution (1 Imaginary Fraguency)	
Table S22	Solution (1 imaginary frequency). Cartagian apprdinates (\hat{A}) of [Cd(abda)(H,O),] 6H,O complex, corresponding	27.29
Table 555	Cartesian coordinates (A) of $[Gu(Coda)(H_2O)_3]$. GH_2O complex, corresponding	57-38
	to Gd-O39(w) bond optimized at TPSSn/SCRECP/6-51G(d,p), aqueous	
	solution (1 Imaginary Frequency).	20.40
Table S34	Cartesian coordinates (A) of $[Gd(cbda)(H_2O)_3]$.6H ₂ O complex, corresponding	38-40
	to Gd-O4/(w) bond optimized at TPSSh/SCRECP/6-31G(d,p), aqueous	
	solution (1 Imaginary Frequency).	
Table S35	Cartesian coordinates (A) of $[Gd(peada)(H_2O)_2]^4H_2O$ complex,	40-41
	corresponding to Gd-O43(w) bond optimized at TPSSh/SCRECP/6-31G(d,p),	
	aqueous solution (1 Imaginary Frequency).	
Table S36	Cartesian coordinates (Å) of $[Gd(peada)(H_2O)_2]^4H_2O$ complex,	42-43
	corresponding to Gd-O40(w) bond optimized at TPSSh/SCRECP/6-31G(d,p),	
	aqueous solution (1 Imaginary Frequency).	
Table S37	Cartesian coordinates (Å) of [Gd(cbda)(H ₂ O) ₃].6H ₂ O complex, optimized at	43-45
	TPSSh/SARC-ZORA/6-31G(d,p), aqueous solution (0 Imaginary Frequency).	
Table S38	Cartesian coordinates (Å) of [Gd(peada)(H ₂ O) ₂] ⁻ .4H ₂ O complex, optimized at	45-46
	TPSSh/SARC-ZORA/6-31G(d,p), aqueous solution (0 Imaginary Frequency).	
	List of Figures	
Figure S1	Optimized structures of a) [Gd(cbda)(H ₂ O) ₃].6H ₂ O and b) [Gd(peada)(H ₂ O) ₂]	13
	.4H ₂ O complex using LCRECP/TPSSh/6-31G(d,p) level of theory.	
Figure S2	Relaxed potential energy surface scans of the tris-aquated	13
	[Gd(cbda)(H ₂ O) ₃].6H ₂ O and bis-aquated [Gd(peada)(H ₂ O) ₂] ⁻ .4H ₂ O complex	
	calculated using SCRECP/TPSSh/6-31G(d,p) method.	
Figure S3	Structure of the transition states (TSs) for the three water molecules of	14
	[Gd(cbda)(H ₂ O) ₃].6H ₂ O using LCRECP; (a) TS of Gd-O36(w), (b)TS of Gd-	
	O39(w), and (c) TS of Gd-O47(w).	
Figure S4	Structure of the transition states (TSs) for the two water molecules of	14
	[Gd(peada)(H ₂ O) ₂] ⁻ .4H ₂ O complex using LCRECP/TPSSh/6-31G(d,p); a) TS	
	of Gd-O40(w) and b)TS of Gd-O43(w).	

Figure S5	IRC plots for the dissociation of a) Gd-O36(w), b) Gd-O39(w), c) Gd-O47(w),	15
	bond of the [Gd(cbda)(H ₂ O) ₃].6H ₂ O complex (top) and d) Gd-O40(w), e) Gd-	
	O43(w) bond for [Gd(peada)(H ₂ O) ₂] ⁻ .4H ₂ O (bottom) complexes respectively	
	using LCRECP/TPSSh/6-31G(d,p) level of theory.	
	List of Scheme	
Scheme	Thermodynamic Cycle for explaining the stabilities of [Gd(peada)] ⁻ and	15
S1	[Gd(tpaa)] Complexes.	

Table S1: Binding energy values ($\Delta E_{TOTAL} = E_{COMPLEX} - E_{LIGAND} - E_{Gd(III)}$) and relative binding energy (ΔE_{REL}) values (in kcal/mol) of the chosen complexes were calculated using TPSSh/6-31G(d,p)/SCRECP level of theory.

Methods	Complex	ΔE_{total} (BSSE corrected)	ΔErelative
	Gd(III)-peada	-197.13	0.0
TPSSh/6-31G(d,p)/SCRECP	Gd(III)-tpaa	-165.73	+31.4
	Gd(III)-cbda	-166.42	0.0
	Gd(III)-dpaa	-165.06	+1.36

Table S2: Binding energy values ($\Delta E_{TOTAL} = E_{COMPLEX} - E_{LIGAND} - E_{Gd(III)}$) and relative binding energy (ΔE_{REL}) values (in kcal/mol) of the chosen complexes using different density functionals and basis sets with LCRECP level of theory.

Methods	Complex	$\Delta E_{total}(BSSE$	ΔE relative
		corrected)	
	Gd(III)-peada	-157.86	0.00
	Gd(III)-tpaa	-127.51	+30.35
TPSSh/6-31G(d,p)	Gd(III)-cbda	-129.26	0.00
	Gd(III)-dpaa	-127.76	+1.5
	Gd(III)-peada	-113.61	0.0
TPSSh/6-31+G(d,p)	Gd(III)-tpaa	-93.67	+19.94
	Gd(III)-cbda	-89.39	0.0
	Gd(III)-dpaa	-87.59	+1.8
	Gd(III)-peada	-126.79	0.0
TPSSh/def2-TZVP	Gd(III)-tpaa	-101.32	+25.47
(Single Point Energy)	Gd(III)-cbda	-100.25	0.00
	Gd(III)-dpaa	-98.53	+1.72
B3LYP/6-31G(d,p)	Gd(III)-peada	-155.43	0.0
	Gd(III)-tpaa	-114.76	+40.67
	Gd(III)-cbda	-118.68	0.0
	Gd(III)-dpaa	-117.39	+1.29
B3LYP-D3/6-31G(d,p)	Gd(III)-peada	-162.74	0.0
	Gd(III)-tpaa	-138.78	+23.96
	Gd(III)-cbda	-140.69	0.0
	Gd(III)-dpaa	-139.29	+1.4
B3LYP-D3/6-31+G(d,p)	Gd(III)-peada	-128.03	0.0
	Gd(III)-tpaa	-107.31	+20.72
	Gd(III)-cbda	-111.49	0.0
	Gd(III)-dpaa	-109.89	+1.6
ωB97XD/6-31G(d,p)	Gd(III)-peada	-159.45	0.0
	Gd(III)-tpaa	-132.04	+27.41
	Gd(III)-cbda	-134.87	0.0
	Gd(III)-dpaa	-133.28	+1.59

Table S3: Bond length values of the $[Gd(tpaa)(H_2O)_2]$ complex using LCRECP and SCRECP with 6-31G(d,p) for H, C, N, O, and TPSSh level of theory.

Complex	Core-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-
	model	O48(W)	O51(W)	N11	N9	N21	N37	025	027	O40
Gd-tpaa	Large	2.774	2.571	2.824	2.616	2.614	2.692	2.351	2.417	2.399
	core									
Gd-tpaa	Small	3.72	2.46	2.72	2.50	2.52	2.60	2.27	2.39	2.34
	core									

Table S4: Bond length values of the $[Gd(peada)(H_2O)_2]^-$ complex using LCRECP and SCRECP with 6-31G(d,p) for H, C, N, O, and TPSSh level of theory.

Complex	Core-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-
	model	O40(w)	O43 (w)	N1	N2	N23	011	012	017	O29
Gd-	Large	3.36	2.54	2.65	2.62	2.56	2.34	2.33	2.36	2.42
peada	core									
Gd-	Small	3.68	2.47	2.59	2.55	2.49	2.29	2.27	2.31	2.37
peada	core									

Table S5: Bond length values of the $[Gd(dpaa)(H_2O)_3]$ complex using LCRECP and SCRECP with 6-31G(d,p) for H, C, N, O, and TPSSh level of theory.

Complex	Core-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-
	model	O36(w)	O39 (w)	O43 (w)	N1	N9	N15	07	012	014
Gd-dpaa	Large	2.60	2.59	2.54	2.74	2.61	2.59	2.36	2.41	2.42
	core									
Gd-dpaa	Small	2.48	2.52	2.55	2.66	2.53	2.54	2.28	2.38	2.34
	core									

Table S6: Bond length (Å) values of the $[Gd(cbda)(H_2O)_3]$ complex using LCRECP and SCRECP with 6-31G(d,p) for H, C, N, O, and TPSSh level of theory.

Complex	Core-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-
	model	O36(w)	O39(w)	O47 (w)	N1	N9	N15	07	012	014
Gd-cbda	Large	2.60	2.59	2.54	2.76	2.61	2.59	2.35	2.41	2.43
	core									
Gd-cbda	Small	2.48	2.53	2.55	2.68	2.52	2.54	2.28	2.38	2.34
	core									

Table S7: Thermodynamic parameters (kcal/mol, scheme 1) were obtained with different density functionals and basis sets for [Gd(cbda)] and [Gd(dpaa)] complexes.

Methods	$\Delta G^{a}\left(\mathbf{g}\right)$	$\Delta G^a(\text{sol})$	$\Delta G^{b}(sol)$	$\Delta G_{(aq)}^{c(calcd)}$	$\Delta G_{(aq)}^{d(exp)}$
		[Gd(cbd	[Gd(dpaa)]		
		a)]			
B3LYP/6-31G(d,p)/LCRECP	-6.27	-84.72	-88.48	-1.89	-5.48
B3LYP-D3/6-31G(d,p)/LCRECP	-3.5	-85.45	-87.89	-0.43	-5.48
B3LYP-D3/6-31+G(d,p)/LCRECP	-1.25	-98.312	-101.08	-10.29	-5.48
M06/6-31G(d,p)/LCRECP	-3.76	-88.48	-90.99	-1.25	-5.48
TPSSh/6-31G(d,p)/LCRECP	-3.72	-83.54	-85.45	-1.08	-5.48
TPSSh/6-31+G(d,p)/LCRECP	-4.60	-93.34	-94.13	-7.60	-5.48
ωB97XD/6-31G(d,p)/LCRECP	-4.4	-90.75	-92.51	-11.47	-5.48
B3LYP/6-31G(d,p)/SCRECP	-6.27	-75.30	-75.30	-6.27	-5.48
TPSSh/6-31G(d,p)/SCRECP	-3.83	-69.72	-70.97	-1.88	-5.48

Table S8: Thermodynamic parameters (kcal/mol, scheme S1) were obtained with different density functionals and basis sets for [Gd(peada)]⁻ and [Gd(tpaa)] complexes.

Methods	$\Delta G^{a}\left(\mathbf{g}\right)$	ΔG^{a} (sol)	$\Delta G^{b}(sol)$	$\Delta G_{(aq)}^{e(calcd)}$	$\Delta G_{(aq)}^{d(ex)}$
		[Gd(peada)	[Gd(tpaa]		p)
]-			
B3LYP/6-31G(d,p)/LCRECP	-220.17	-91.87	-68.13	-11.70	-9.24
B3LYP-D3/6-31G(d,p)/LCRECP	-227.79	-100.72	-79.86	-15.95	-9.24
B3LYP-D3/6-31+G(d,p)/LCRECP	-222.92	-111.84	-90.21	-8.40	-9.24
M06/6-31G(d,p)/LCRECP	-226.49	-102.96	-79.33	-18.49	-9.24
TPSSh/6-31G(d,p)/LCRECP	-222.29	-99.37	-76.51	-11.52	-9.24
TPSSh/6-31+G(d,p)/LCRECP	-218.44	-107.97	-85.96	-6.26	-9.24
ωB97XD/6-31G(d,p)/LCRECP	-226.59	-104.63	-82.83	-12.84	-9.24
B3LYP/6-31G(d,p)/SCRECP	-220.17	-91.87	-68.13	-11.70	-9.24
TPSSh/6-31G(d,p)/SCRECP	-219.55	-89.19	-65.03	10.09	-9.24

 $\Delta G^{a}_{(g)}$ = Change in Gibbs free energy value in gas phase along with BSSE correction using counterpoise method.

 ΔG^{a} (sol) = Calculated in solvent phase with the structure optimized in the gas phase.

 $\Delta \mathbf{G^{c}}_{(aq)} = \Delta G_{(g)} + \Delta G_{sol}[Gd(cbda)] + \Delta G_{sol}[(dpaa^{3-})] - \Delta G_{sol}[(cbda^{3-})] - \Delta G_{sol}[Gd(dpaa)]$

 $\Delta G^{e}_{(aq)} = \Delta G_{(g)} + \Delta G_{sol}[Gd(peada)]^{-} + \Delta G_{sol}[(tpaa^{3-})] - \Delta G_{sol}[(peada^{4-})] - \Delta G_{sol}[Gd(tpaa)]$

 $\Delta G_{aq}^{d(exp)} = -RTlnK$, where K is the equilibrium constant. The values of stability constant

 $(log K_{GdL})$ were mentioned in earlier literature. ^{1, 2}

Table S9: Ln-O(w) bond lengths (Å) of $[Ln(cbda)(H_2O)_3].6H_2O$ complex using SCRECP/TPSSh/6-31G(d,p) level of theory.

Metal	Ln-	Ln-	Ln-	Ln-	Ln-	Ln-	Ln-	Ln-	Ln-
	O36(w)	O39(w)	O47(w)	N15	N1	N9	012	014	07
La	2.572	2.556	2.484	2.756	2.904	2.723	2.515	2.553	2.403
Gd	2.453	2.433	2.364	2.628	2.800	2.643	2.420	2.473	2.295
Lu	2.389	2.361	2.293	2.574	2.795	2.619	2.370	2.411	2.233

Table S10: Ln-O(w) bond lengths (Å) of $[Ln(peada)(H_2O)_2]^-.4H_2O$ complex using SCRECP/TPSSh/6-31G(d,p) level of theory.

Metal	Ln-	Ln-	Ln-	Ln-	Ln-	Ln-	Ln-	Ln-	Ln-
	O40(W)	U43(W)	NI	NZ	N23	OII	012	017	029
La	2.707	2.612	2.796	2.827	2.705	2.445	2.399	2.438	2.535
Gd	2.621	2.506	2.654	2.671	2.535	2.306	2.301	2.338	2.403
Lu	2.580	2.446	2.610	2.624	2.467	2.248	2.243	2.273	2.324

Table S11: Bond length values of the complex $[Gd(cbda)(H_2O)_3].6H_2O$ using LCRECP with different density functionals and basis sets.

Metal	Method	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-
		O36(w)	O39 (w)	O47(w)	N15	N1	N9	012	014	07
La	TPSSh/	2.618	2.572	2.555	2.794	2.944	2.779	2.592	2.604	2.473
	6-31G(d,p)									
	TPSSh/	2.661	2.604	2.584	2.804	2.936	2.765	2.582	2.606	2.474
	6-31+G(d,p)									
	B3LYP/	2.636	2.582	2.573	2.863	3.010	2.835	2.582	2.607	2.476
	6-31G(d,p)									
	B3LYP-D3/	2.625	2.571	2.547	2.801	2.964	2.785	2.617	2.607	2.482
	6-31G(d,p)									
	B3LYP-D3/	2.676	2.670	2.572	2.812	2.943	2.755	2.579	2.603	2.482
	6-31+G(d,p)									
	ω B97XD /	2.611	2.620	2.538	2.786	2.923	2.746	2.570	2.600	2.481

	6-31G(d,p)									
Gd	TPSSh/	2.527	2.455	2.421	2.687	2.871	2.703	2.498	2.514	2.351
	6-31G(d,p)									
	TPSSh/	2.562	2.489	2.448	2.678	2.839	2.687	2.495	2.526	2.349
	6-31+G(d,p)									
	B3LYP/	2.545	2.470	2.431	2.730	2.966	2.745	2.499	2.516	2.353
	6-31G(d,p)									
	B3LYP-D3/	2.496	2.485	2.405	2.708	2.89	2.702	2.467	2.518	2.370
	6-31G(d,p)									
	B3LYP-D3/	2.527	2.492	2.430	2.701	2.864	2.692	2.482	2.528	2.362
	6-31+G(d,p)									
	ωB97XD/	2.507	2.491	2.416	2.686	2.866	2.689	2.467	2.513	2.360
	6-31G(d,p)									
Lu	TPSSh/	2.433	2.395	2.320	2.624	2.836	2.650	2.407	2.434	2.265
	6-31G(d,p)									
	TPSSh/	2.461	2.433	2.340	2.599	2.796	2.637	2.404	2.444	2.259
	6-31+G(d,p)									
	B3LYP/	2.464	2.377	2.329	2.690	2.995	2.712	2.421	2.416	2.255
	6-31G(d,p)									
	B3LYP-D3/	2.438	2.412	2.316	2.643	2.884	2.666	2.407	2.426	2.268
	6-31G(d,p)									
	B3LYP-D3/	2.465	2.458	2.348	2.612	2.833	2.650	2.408	2.434	2.261
	6-31+G(d,p)									
	ωB97XD/	2.433	2.410	2.315	2.623	2.850	2.653	2.408	2.425	2.264
	6-31G(d,p)									

Table S12: Bond length values of the complex $[Gd(peada)(H_2O)_2]^-.6H_2O$ using LCRECP and with different DFT methods and basis sets.

Metal	Method	Gd- O40(w)	Gd- O43(w)	Gd- N1	Gd- N2	Gd- N23	Gd- 011	Gd- 012	Gd- 017	Gd- O29
La	TPSSh/ 6-31G(d,p)	2.721	2.658	2.832	2.858	2.740	2.505	2.472	2.509	2.588
	TPSSh/ 6-31+G(d,p)	2.854	2.692	2.836	2.859	2.761	2.530	2.474	2.503	2.625
	B3LYP/ 6-31G(d,p)	2.734	2.691	2.888	2.930	2.768	2.509	2.482	2.512	2.592
	B3LYP-D3/ 6-31G(d,p)	2.743	2.642	2.856	2.866	2.752	2.510	2.479	2.527	2.616
	B3LYP-D3/ 6-31+G(d,p)	2.852	2.693	2.871	2.879	2.773	2.537	2.482	2.513	2.621
	ωB97XD/ 6-31G(d,p)	2.732	2.631	2.846	2.861	2.744	2.508	2.476	2.525	2.606
Gd	TPSSh/ 6-31G(d,p)	2.627	2.541	2.723	2.743	2.598	2.395	2.370	2.385	2.450

	TPSSh/	2.709	2.578	2.718	2.732	2.591	2.404	2.368	2.381	2.458
	6-31+G(d,p)									
	B3LYP/	2.650	2.572	2.77	2.80	2.618	2.405	2.378	2.389	2.452
	6-31G(d,p)									
	B3LYP-D3/	2.588	2.531	2.747	2.761	2.604	2.399	2.383	2.395	2.442
	6-31G(d,p)									
	B3LYP-D3/	2.65	2.55	2.750	2.751	2.601	2.413	2.384	2.390	2.454
	6-31+G(d,p)									
	ωB97XD/	2.60	2.542	2.739	2.753	2.595	2.396	2.377	2.386	2.435
	6-31G(d,p)									
Lu	TPSSh/6-	2.603	2.481	2.656	2.688	2.505	2.267	2.284	2.305	2.356
	31G(d,p)									
	TPSSh/	2.716	2.528	2.644	2.671	2.493	2.267	2.277	2.295	2.356
	6-31+G(d,p)									
	B3LYP/	2.648	2.516	2.717	2.775	2.523	2.263	2.286	2.296	2.351
	6-31G(d,p)									
	B3LYP-D3/	2.591	2.492	2.684	2.665	2.499	2.280	2.291	2.312	2.340
	6-31G(d,p)									
	B3LYP-D3/	2.685	2.546	2.672	2.680	2.496	2.273	2.285	2.295	2.349
	6-31+G(d,p)									
	ω B97XD /	2.584	2.482	2.674	2.677	2.499	2.274	2.290	2.302	2.337
	6-31G(d,p)									

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Table S13: Electron density (ρ_{BCP}), electron localization function (ELF), and Laplacian of electron density ($\nabla^2 \rho$) at the Ln-O(w) bond critical points calculated for the [Ln(cbda)(H₂O)₃]·6H₂O system (Ln = La-Lu) at the TPSSh/SCRECP/6-31G(d,p) theoretical level.

Metal		р вср			ELF			$\nabla^2 \rho$	
	Ln-	Ln-	Ln-	Ln-	Ln-	Ln-	Ln-	Ln-	Ln-
La	0.04024	0.04212	0.047(w)	0.12274	0.12052	0.12702	0.1511	0.1562	047(w)
La	0.04034	0.04215	0.04622	0.12274	0.12932	0.13703	0.1311	0.1303	0.1000
Gd	0.04338	0.04532	0.05207	0.101	0.10404	0.108	0.1948	0.2048	0.2641
Lu	0.04398	0.04567	0.05103	0.081	0.0901	0.09554	0.2074	0.2239	0.2730

Table S14: Electron density (ρ_{BCP}), electron localization function (ELF), and Laplacian of electron density ($\nabla^2 \rho$) at the Ln-O(w) bond critical points calculated for the [Ln(peada)(H₂O)₃]⁻.4H₂O system (Ln = La-Lu) at the TPSSh/SCRECP/6-31G(d,p) theoretical level.

Metal	рвср		EI	LF	$\nabla^2 \rho$		
	Ln-O40(w)	Ln-O43(w)	Ln-O40(w)	Ln-O43(w)	Ln-O40(w)	Ln-O43(w)	
La	0.03021	0.03602	0.10764	0.11747	0.1071	0.1363	
Gd	0.03595	0.03893	0.09598	0.09986	0.1229	0.1687	
Lu	0.02705	0.03623	0.06207	0.07502	0.1153	0.1754	

Table S15: Electron density (ρ_{BCP}), electron localization function (ELF), and Laplacian of electron density ($\nabla^2 \rho$) at the Ln-O(w) critical points calculated for the [Gd(cbda)(H₂O)₃].6H₂O system at the LCRECP with different density functionals and basis sets.

Metal	Method		ρвср			ELF		$\nabla^2 \rho$		
		Gd-O36	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-	Gd-
		(w)	O39	O47	O36	O39	O47	O36	O39	O47
			(w)	(w)	(w)	(w)	(w)	(w)	(w)	(w)
La	TPSSh/	0.03471	0.0389	0.038	0.09	0.112	0.1037	0.1376	0.1536	0.1624
	6-31G(d,p)		2	75	891	22	8			
	TPSSh/	0.0311	0.0357	0.035	0.09	0.104	0.0969	0.1224	0.1402	0.1497
	6-31+G(d,p)			8	04	9				
	B3LYP/	0.0330	0.0375	0.037	0.09	0.106	0.1004	0.1314	0.1502	0.1546
	6-31G(d,p)			1	35	5				
	B3LYP-D3/	0.0339	0.0381	0.039	0.09	0.108	0.1044	0.1360	0.1470	0.1663
	6-31G(d,p)			4	53	0				
	B3LYP-D3/	0.0297	0.0307	0.037	0.08	0.092	0.1031	0.1176	0.1183	0.1537
	6-31+G(d,p)			2	53	1				
	ωB97XD/	0.0345	0.0349	0.040	0.09	0.096	0.1057	0.1419	0.1378	0.1715
	6-31G(d,p)			4	34	5				
Gd	TPSSh/	0.03755	0.0410	0.042	0.09	0.100	0.1002	0.1450	0.1764	0.1953
	6-31G(d,p)		5	96	674	54				
	TPSSh/	0.0342	0.0376	0.039	0.09	0.100	0.1012	0.1303	0.1588	0.1799
	6-31+G(d,p)			3	39	9				
	B3LYP/	0.0355	0.0394	0.041	0.09	0.103	0.0979	0.1379	0.1686	0.1890
	6-31G(d,p)			0	52	1				
	B3LYP-D3/	0.0378	0.0418	0.045	0.09	0.109	0.1094	0.1587	0.1784	0.2035
	6-31G(d,p)		1	0	78	85				
	B3LYP-D3/	0.0340	0.0346	0.041	0.09	0.092	0.1047	0.1443	0.1434	0.1882
	6-31+G(d,p)			9	13	8				
	ωB97XD/	0.0357	0.0364	0.043	0.09	0.092	0.1025	0.1553	0.1569	0.1993
	6-31G(d,p)			3	21	7				

Lu	TPSSh/	0.0373	0.0405	0.047	0.09	0.101	0.1091	0.1592	0.1777	0.2209
	6-31G(d,p)		3	08	593	27				
	TPSSh/	0.0345	0.0367	0.043	0.09	0.095	0.1049	0.1456	0.1573	0.2018
	6-31+G(d,p)			8	04	3				
	B3LYP/	0.0345	0.0419	0.044	0.09	0.103	0.1008	0.1453	0.1860	0.2150
	6-31G(d,p)			7	02	8				
	B3LYP-D3/	0.0365	0.0387	0.047	0.09	0.097	0.1096	0.1566	0.1690	0.2231
	6-31G(d,p)			4	38	6				
	B3LYP-D3/	0.0338	0.0343	0.043	0.08	0.089	0.1042	0.1436	0.1462	0.2012
	6-31+G(d,p)			5	81	7				
	ωB97XD/	0.0366	0.0385	0.046	0.09	0.093	0.1049	0.1605	0.1717	0.2261
	6-31G(d,p)			9	05	7				

Table S16: Electron density (ρ_{BCP}), electron localization function (ELF), and Laplacian of electron density ($\nabla^2 \rho$) at the Ln-O(w) critical points calculated for the [Gd(peada)(H₂O)₂]⁻.4H₂O system at the LCRECP and different density functionals and basis sets.

Metal	Method	ρ	СР	E	LF	7	⁷² ρ
		Ln-	Ln-	Ln-	Ln-	Ln-	Ln-
		O40(w)	O43(w)	O40(w)	O43(w)	O40(w)	O43(w)
La	TPSSh/6- 31G(d,p)	0.0294	0.0323	0.0923	0.0944	0.1058	0.1243
	TPSSh/6-	0.0220	0.0295	0.0728	0.0879	0.0850	0.1130
	31+G(d,p)	0.0283	0.0208	0.0882	0.0875	0.1025	0.11/1
	6-31G(d,p)	0.0283	0.0298	0.0882	0.0875	0.1025	0.1141
	B3LYP-D3/	0.0278	0.0322	0.0869	0.0890	0.1002	0.1305
	6-31G(d,p)	0.001.6	0.0000	0.0704	0.0040	0.0751	0.1100
	B3LYP-D3/ 6-31+G(d.n)	0.0216	0.0289	0.0704	0.0842	0.0751	0.1129
	ωB97XD/	0.0282	0.0329	0.0845	0.0883	0.1043	0.1357
	6-31G(d,p)						
Gd	TPSSh/ 6-31G(d n)	0.0342	0.0364	0.0940	0.0989	0.1106	0.1402
	TPSSh/	0.0310	0.0350	0.0926	0.0976	0.1030	0.1252
	6-31+G(d,p)						
	B3LYP/ 6-31G(d.p)	0.0305	0.0349	0.0910	0.0985	0.1036	0.1284
	B3LYP-D3/ 6-31G(d,p)	0.0350	0.0398	0.0959	0.1006	0.1233	0.1449
	B3LYP-D3/ 6-31+G(d,p)	0.0300	0.0335	0.0908	0.0943	0.1018	0.1337
	ωB97XD/6- 31G(d,p)	0.0339	0.0411	0.0976	0.0986	0.1185	0.1418
Lu	TPSSh/ 6-31G(d.p)	0.0298	0.0334	0.0748	0.086	0.0987	0.1389
	$\frac{TPSSh}{6-31+G(d n)}$	0.0276	0.0296	0.0587	0.0786	0.0728	0.1203
	B3LYP/ 6-31G(d n)	0.0236	0.0305	0.0678	0.0806	0.0874	0.1253
	B3LYP-D3/ 6-31G(d.p)	0.0266	0.0320	0.0745	0.0821	0.1021	0.1349
	B3LYP-D3/ 6-31+G(d.p)	0.0212	0.0280	0.0607	0.0741	0.0786	0.1146
	ωB97XD/ 6-31G(d,p)	0.0268	0.0325	0.0724	0.0807	0.1053	0.1400

Figure S1: Optimized structures of a) $[Gd(cbda)(H_2O)_3].6H_2O$ and b) $[Gd(peada)(H_2O)_2]^-$.4H₂O complex using LCRECP/TPSSh/6-31G(d,p) level of theory.

Figure S2: Relaxed potential energy surface scans of the tris-aquated $[Gd(cbda)(H_2O)_3].6H_2O$ and bis-aquated $[Gd(peada)(H_2O)_2]^-.4H_2O$ complex calculated using SCRECP/TPSSh/6-31G(d,p) method.

Figure S3: Structure of the transition states (TSs) for the three water molecules of $[Gd(cbda)(H_2O)_3].6H_2O$ using LCRECP; (a) TS of Gd-O36(w), (b)TS of Gd-O39(w), and (c) TS of Gd-O47(w).

Figure S4: Structure of the transition states (TSs) for the two water molecules of $[Gd(peada)(H_2O)_2]^-.4H_2O$ complex using LCRECP; a) TS of Gd-O40(w) and b)TS of Gd-O43(w).

Figure S5: IRC plots for the dissociation of a) Gd-O36(w), b) Gd-O39(w), c) Gd-O47(w), bond of the $[Gd(cbda)(H_2O)_3].6H_2O$ complex (top) and d) Gd-O40(w), e) Gd-O43(w) bond for $[Gd(peada)(H_2O)_2]^-.4H_2O$ (bottom) complexes respectively using LCRECP/TPSSh/6-31G(d,p) level of theory.

Scheme S1. Thermodynamic cycle for explaining the relative stabilities of [Gd(peada)]⁻ and [Gd(tpaa)] Complexes.

Table S17: Calculated Gd-O(w) bond length, electron density (ρ , au), electron localization function (ELF), and k_{ex}^{298} value of [Gd(cbda)(H₂O)₃]·6H₂O complex using LCRECP and different density functionals and basis sets.

Method	Ln-Ow bond length	ρвср	ELF	kex ²⁹⁸ /10 ⁶ S ⁻¹
TPSSh/	Gd-O36(w)= 2.527	0.0375	0.09674	43.68
6-31G(d,p)	Gd-O39(w)=2.455	0.0410	0.10054	4.2
	Gd-O47(w)= 2.421	0.0429	0.10029	4.6
TPSSh/	Gd-O36(w)= 2.562	0.0342	0.0939	118.9
6-31+G(d,p)	Gd-O39(w)=2.489	0.0376	0.1009	6.9
	Gd-O47(w)=2.448	0.0393	0.1012	3.5
B3LYP/	Gd-O36(w)= 2.545	0.0355	0.0952	55.5
6-31G(d,p)	Gd-O39(w)=2.470	0.0394	0.1031	2.3
	Gd-O47(w)=2.431	0.0410	0.0979	12.8
B3LYP-D3/	Gd-O36(w)= 2.496	0.0378	0.0978	17.8
6-31G(d,p)	Gd-O39(w)=2.485	0.0418	0.10985	0.25
	Gd-O47(w)=2.405	0.0450	0.1094	0.08
B3LYP-D3/	Gd-O36(w)= 2.527	0.0340	0.0913	305.41
6-31+G(d,p)	Gd-O39(w)=2.492	0.0346	0.0928	157.14
	Gd-O47(w)=2.430	0.0419	0.1047	3.3
ω B97XD /	Gd-O36(w) = 2.507	0.0357	0.0921	173.92
6-31G(d,p)	Gd-O39(w)=2.491	0.0364	0.0927	133.51
	Gd-O47(w)=2.416	0.0433	0.1025	1.6

Table S18: Calculated Gd-O(w) bond length, electron density (ρ , au), electron localization function (ELF), and k_{ex}^{298} value of [Gd(peada)(H₂O)₂]··4H₂O complex using LCRECP and different density functionals and basis sets.

Method	Ln-Ow bond length	ρвср	ELF	kex ²⁹⁸ /10 ⁶ S ⁻¹
TPSSh/	Gd-O40(w)= 2.627	0.0342	0.0940	118.9
6-31G(d,p)	Gd-O43(w)=2.541	0.0364	0.0989	16.6
TPSSh/	Gd-O40(w)= 2.709	0.0310	0.0926	522.75
6-31+G(d,p)	Gd-O43(w)=2.578	0.0350	0.0976	20.48
B3LYP/	Gd-O40(w)= 2.650	0.0305	0.0910	944.94
6-31G(d,p)	Gd-O43(w)=2.572	0.0349	0.0985	35.5
B3LYP-D3/	Gd-O40(w)= 2.588	0.0350	0.0959	56.6
6-31G(d,p)	Gd-O43(w)=2.531	0.0398	0.1006	4.7
B3LYP-D3/	Gd-O40(w)= 2.650	0.0300	0.0908	1329.08
6-31+G(d,p)	Gd-O43(w)=2.550	0.0335	0.0943	140.38
ωB97XD/	Gd-O40(w) = 2.60	0.0339	0.0976	75.5
6-31G(d,p)	Gd-O43(w)=2.542	0.0411	0.0986	10.23

Table S19: Activation energy values of $[Gd(cbda)(H_2O)_3].6H_2O$ and $[Gd(peada)(H_2O)_2]^-.4H_2O$ complexes calculated using SCRECP/TPSSh/6-31G(d,p)theoretical level.

$[Gd(cbda)(H_2O)_3].6H_2O \qquad [Gd(peada)(H_2O)_3].6H_2O \qquad [$					
Activation	Gd-O36(w) Gd-O39(w) Gd-O47(w)		Gd-O40(w)	Gd-O43(w)	
parameters					
$\Delta E_a^{\#}(\text{kcal/mol})$	5.33	7.02	10.29	-0.63	5.2
rGd-0/Å	2.46	2.43	2.36	2.62	2.50
r _{Gd} -o(TS)/Å	3.42	3.34	3.50	2.98	3.54
ΔH [#] (kcal/mol)	4.7	6.27	9.78	-0.78	4.26
ΔG [#] (kcal/mol)	4.26	5.31	9.16	1.081	3.25
$\Delta S^{\#}(J/mol/K)$	4.19	13.51	8.78	-26.10	13.80

Table S20: Bonding behavior of the $[Gd(cbda)(H_2O)_3].6H_2O$ and $[Gd(peada)(H_2O)_2]^-.4H_2O$ complexes from ETS analysis (in kJ/mol).

Metal	Ligands	ΔE_{int}	ΔEpauli	ΔEoi	ΔV_{elst}	^a %elst
La	Cbda+H ₂ O	-5202.50	811.51	-1765.70	-4248.31	70.64
	Peada+ H ₂ O	-5954.71	732.18	-1733.36	-4953.53	74.07
Lu	Cbda+H ₂ O	-5618.75	601.31	-1925.46	-4294.60	69.04
	Peada+ H ₂ O	-6479.69	711.38	-2029.73	-5161.34	71.77

^a % elst = $\Delta V_{elst} / (\Delta V_{elst} + \Delta E_{oi})$

Table S21: Cartesian coordinates (Å) of $[Gd(tpaa)(H_2O)_2]$ complex (without explicit water molecules) optimized at TPSSh/LCRECP/6-31G(d,p), aqueous solution (0 Imaginary Frequency).

Atoms	Х	Y	Ζ
С	2.30577300	3.73966400	1.60603400
С	1.67740800	2.50511600	1.40738300
С	1.32093500	2.99074500	-0.83557700
С	1.91816600	4.24379500	-0.71272000
С	2.41742300	4.62444500	0.53339600
Н	2.70083100	3.99373400	2.58364300
Н	1.98801400	4.87837900	-1.58795700
Н	2.89900800	5.58775100	0.66577600
Ν	1.18892500	2.14342800	0.20639100
С	1.47786300	1.52235200	2.53715800
Ν	1.53175000	0.12321700	2.04586900
С	0.91706300	-0.79978400	3.03345100
С	-1.27067400	-0.66158100	4.35575100
С	-2.61602400	-0.28902100	4.39385200
С	-3.20080800	0.27485100	3.25833500
С	-2.42138500	0.41263300	2.11079300
С	-0.55804000	-0.49261000	3.16459200
Н	-0.77547600	-1.06076200	5.23424300
Н	-3.18993600	-0.41174800	5.30657400
Н	-4.22855000	0.61727900	3.24269400
Ν	-1.13835000	0.00989400	2.06110300
С	-2.94662200	1.06363800	0.84664700
С	0.80286200	2.49539400	-2.17085000
0	0.83657900	3.24437900	-3.15218400
0	0.36324700	1.27154600	-2.15447000
0	-4.11913900	1.45293400	0.80459600
0	-2.06572700	1.15855400	-0.10491300
С	2.94667400	-0.23968000	1.80881000
С	3.08236000	-1.49048800	0.97722600
С	4.15015000	-2.37781700	1.14978200
С	4.25973100	-3.47711600	0.29760200
С	3.29641000	-3.66165700	-0.69438800
С	2.25372500	-2.74075800	-0.79103600
Н	4.87587200	-2.20489900	1.93713000
Н	5.07926000	-4.17923100	0.41143900
Н	3.32273400	-4.49609300	-1.38471900
Ν	2.14860800	-1.67469400	0.02713200
С	1.15997800	-2.89767200	-1.82723200
0	1.21032900	-3.84815300	-2.61675600
0	0.23399300	-1.98789100	-1.78239400
Н	1.06047000	-1.82245100	2.66566100
Н	1.40759100	-0.73139300	4.01480400

Н	2.21808200	1.69703500	3.33002200
Н	0.48983700	1.69476100	2.97375900
Н	3.40679800	0.59000000	1.25927800
Н	3.49575500	-0.34603100	2.75494600
Gd	-0.02341800	-0.11908800	-0.29920500
0	-1.87007100	-0.11680100	-2.36852600
Н	-2.33022200	0.53383000	-1.79423800
Н	-1.20430500	0.43057600	-2.83143200
0	-1.78438800	-1.98541300	-0.14260600
Н	-2.69186300	-1.73545300	-0.37310100
Н	-1.39372300	-2.34911000	-0.96901000

E = -1668.864651Hartree

Zero-point correction = 0.389638 Hartree/particle

Sum of electronic and thermal Energies = -1668.443462 Hartree

Sum of electronic and thermal Enthalpies = -1668.442518 Hartree

Sum of electronic and thermal Free Energies = -1668.537182 Hartree

Table S22. Cartesian coordinates (Å) of $[Gd(dpaa)(H_2O)_3]$ complex (without explicit water molecules) optimized at TPSSh/LCRECP/6-31G(d,p), aqueous solution (0 Imaginary Frequency).

Atoms	Х	Y	Z
Ν	3.01838600	-0.12670100	1.18555900
С	3.86035700	0.34878300	0.05956100
Н	4.93033300	0.20495200	0.26421600
Н	3.69122100	1.42676900	-0.05231800
С	3.30501700	-1.54792600	1.50537300
С	2.10191500	-2.27449100	2.13096600
0	0.93009200	-1.82479600	1.77424800
0	2.30475800	-3.24312400	2.86629300
Ν	1.38128700	2.06561700	1.69077100
С	2.57313600	2.04595300	2.31333800
С	-0.71036400	3.13142700	1.03051000
0	-1.00181500	1.98149500	0.49772800
0	-1.43174200	4.13555600	1.03540400
0	-0.31501200	-1.60174300	-1.24727900
Ν	2.18663700	-0.75849000	-1.29415600
С	3.47126400	-0.36706800	-1.21581400
С	3.26120900	0.70220700	2.38763200
Н	2.84289400	0.16106100	3.24475300
Н	4.33602700	0.82660200	2.57877700
С	3.09785600	3.18461700	2.93437600
С	2.34895400	4.36225300	2.92934700

С	1.09686900	4.36815500	2.31335800
С	0.64965200	3.19773500	1.70131000
С	4.38353800	-0.63952700	-2.24014500
С	3.94446100	-1.34109900	-3.36453400
С	2.62021700	-1.77963900	-3.42146000
С	1.77157900	-1.47115400	-2.35939200
С	0.33107400	-1.95053900	-2.31746600
0	-0.11077300	-2.61692200	-3.26118100
Н	5.41546500	-0.31843200	-2.14865600
Н	4.63401400	-1.56256100	-4.17263500
Н	2.23389000	-2.35684500	-4.25288400
Н	4.06954800	3.14206400	3.41440300
Н	2.73553900	5.25856200	3.40347200
Н	0.46252700	5.24603500	2.29120500
0	-0.18047400	1.21967200	-1.82633700
Н	-0.73080400	0.70806300	-2.43811200
Н	-0.78475400	1.82574200	-1.34612000
0	-0.63237100	0.00907500	2.78022400
Н	-0.27176200	-0.88860900	2.93905900
Н	-1.59223200	-0.10861100	2.70320100
Н	3.53522300	-2.07375900	0.57376200
0	-2.04164900	-0.70083400	0.40761800
Н	-1.95232900	-1.24587600	-0.40424500
Н	-2.62438800	0.04448100	0.19090500
Gd	0.39504900	0.01713800	0.40752200
Н	4.17799400	-1.64566100	2.16153800

E = -1498.091303 Hartree

Zero-point correction = 0.34816 Hartree/particle

Sum of electronic and thermal Energies = -1497.714261 Hartree

Sum of electronic and thermal Enthalpies = -1497.713317 Hartree

Sum of electronic and thermal Free Energies = -1497.801429 Hartree

Table S23: Cartesian coordinates (Å) of [Gd(cbda)(H₂O)₃].6H₂O complex, optimized at TPSSh/LCRECP/6-31G(d,p), aqueous solution (0 Imaginary Frequency).

Atoms	Х	Y	Ζ
Ν	2.95004600	-0.23185300	1.26376300
С	3.82156100	0.34290200	0.21606900
Н	4.88923100	0.19938900	0.43598100
Н	3.64547800	1.42478700	0.19436000
С	3.23765500	-1.68552900	1.49111600
С	1.94772800	-2.32900200	2.04299600
0	0.89373000	-2.12298100	1.33987600

0	1.97999700	-3.00196200	3.09806300
Ν	1.39004100	2.02307300	1.61714500
С	2.52012500	1.93637400	2.33696700
С	-0.53642200	3.18548100	0.77743200
0	-1.08632500	2.02182900	0.72617500
0	-1.02244500	4.24315200	0.32045900
0	-0.16823500	-1.76155500	-1.44184300
Ν	2.22019800	-0.62899300	-1.32085300
С	3.49356500	-0.24140800	-1.13693000
С	3.08412000	0.54739100	2.51073300
Н	2.50260800	0.03284400	3.28445000
Н	4.12484500	0.61069700	2.85586700
С	3.10722000	3.06127300	2.92892100
С	2.50890000	4.30987400	2.75444800
С	1.33030200	4.39766300	2.01191600
С	0.79667000	3.22335900	1.48130800
С	4.46395000	-0.39169200	-2.13535600
С	4.09528100	-0.94838200	-3.35970700
С	2.77888200	-1.37768500	-3.53883500
С	1.88110100	-1.21592100	-2.48462600
С	0.46473600	-1.72796500	-2.55738700
0	0.00548500	-2.07174600	-3.67330700
Н	5.48669200	-0.08323000	-1.94626500
Н	4.82816700	-1.06710900	-4.15110400
Н	2.43993500	-1.84364400	-4.45618600
Н	4.01833700	2.95392600	3.50780300
Н	2.95299500	5.19699800	3.19419800
Н	0.81522400	5.33716500	1.85043000
0	-0.76294300	0.87289600	-1.73607800
Н	-1.30369400	0.27298300	-2.30334500
Н	-1.30658800	1.70548600	-1.66870500
0	-0.24307200	-0.08068500	2.79967300
Н	-0.40346700	-0.97045500	3.22237100
Н	-0.97891100	0.52530900	3.08755800
Н	3.36741500	-2.11374400	0.49160600
С	4.47971400	-1.99615200	2.32866700
Н	4.66684800	-3.07245400	2.29940900
Н	5.36651200	-1.48956900	1.93390500
Н	4.34443700	-1.71415900	3.37547200
0	-2.02767200	-0.96087900	0.58506900
Н	-2.42162500	-1.56443100	-0.11139600
Н	-2.73197400	-0.75772200	1.23916300
0	-0.53318700	-2.50198700	3.98257100
Н	-0.41302100	-2.37531100	4.93550800
Н	0.34585500	-2.84612000	3.66344400
0	-2.31426700	1.59998300	3.19775700
Н	-2.09646000	1.89327100	2.28686000
Н	-3.06403700	0.98154900	3.06447700
0	-4.05846900	-0.41508800	2.39408700
Н	-4.24526600	-1.14641300	3.00231600

Н	-4.90579100	-0.20906900	1.97075400
0	-2.75366800	-2.59896700	-1.36375900
Н	-1.77369000	-2.59749000	-1.48887100
Н	-3.01472500	-1.99524000	-2.09187400
0	-2.32375800	-0.79180200	-3.37787800
Н	-2.68419800	-0.39351900	-4.18320300
Н	-1.56312100	-1.36750000	-3.66329400
0	-2.32160800	3.11096300	-1.78708300
Н	-2.00550900	3.64083600	-2.53394200
Н	-1.99946600	3.59942900	-0.98559200
Gd	0.21988800	-0.08132600	0.38827400

E = -1996.134446 Hartree

Zero-point correction = 0.526378 Hartree/particle

Sum of electronic and thermal Energies = -1995.563060 Hartree

Sum of electronic and thermal Enthalpies = -1995.562116 Hartree

Sum of electronic and thermal Free Energies = -1995.684032 Hartree

Table S24: Cartesian coordinates (Å) of $[Gd(cbda)(H_2O)_3].6H_2O$ complex, optimized at TPSSh/SCRECP/6-31G(d,p), aqueous solution (0 Imaginary Frequency).

Atoms	Х	Y	Ζ
Ν	2.82766200	-0.21901000	1.27228500
С	3.77278700	0.28271900	0.24857400
Н	4.82055000	0.08620200	0.51691700
Н	3.65577300	1.37152300	0.19662500
С	3.02681000	-1.68182500	1.54480000
С	1.67951400	-2.23898300	2.04657400
0	0.66501000	-1.95963100	1.31796900
0	1.62893000	-2.91869100	3.10074400
Ν	1.35429100	2.09443700	1.52792500
С	2.46318800	1.99205900	2.27716400
С	-0.57580900	3.25435200	0.71186700
0	-1.07461400	2.07809100	0.58518400
0	-1.11060700	4.32198800	0.33443900
0	-0.24939100	-1.63976800	-1.44645600
Ν	2.17483500	-0.63899600	-1.30924400
С	3.46157500	-0.31547500	-1.09985800
С	2.96879900	0.58836300	2.50107900
Н	2.34274300	0.12834500	3.27453900
Н	4.00307700	0.61359500	2.86922400
С	3.05702400	3.11041100	2.87477900
С	2.47669900	4.36620200	2.68860100
С	1.30033300	4.46412700	1.94355700

C	0.76402200	2 20 (22 20 00	1 401 (1000
C	0.76402300	3.29622800	1.40161900
C	4.45021200	-0.54579800	-2.06426600
C	4.08625300	-1.1200/300	-3.28206300
С	2.75477700	-1.48796700	-3.48503200
С	1.83875900	-1.24700300	-2.46260200
С	0.40395000	-1.69673000	-2.54747900
0	-0.04651600	-2.07877000	-3.65532800
Н	5.48237200	-0.28664000	-1.85409300
Н	4.83319800	-1.30141000	-4.04802800
Η	2.41686900	-1.96810900	-4.39546800
Η	3.95580400	2.99258500	3.47063100
Н	2.92709100	5.24911100	3.13058400
Н	0.78760000	5.40619000	1.78932400
0	-0.63455600	0.97877100	-1.80487100
Н	-1.19224200	0.40854900	-2.38474800
Н	-1.13156200	1.83905800	-1.76647600
0	-0.25764700	0.17160900	2.68439500
Н	-0.40616000	-0.67074200	3.17649100
Н	-1.02326400	0.76319900	2.90794400
Н	3.17683800	-2.14064900	0.56182200
C	4.21036300	-2.03863300	2.44503600
H	4.32955800	-3.12480800	2.45910800
Н	5 14254600	-1 60215600	2 07218600
Н	4 05076300	-1 71151900	3 47515100
0	-2 03525900	-0 64309900	0 52245500
н	-2 45983900	-1 19185300	-0 19655300
Н	-2 38531900	-0.98965100	1 38103300
0	-0 74904300	-2 22267300	4 01947600
U Н	-0.74704500 -0.59718700	-2.22207500 -2.12485400	4.01747000
П Ц	0.07686000	2.12+03+00	3 64766100
	2 62646800	-2.00233700	2 86/27100
U U	-2.02040800	1.433/1/00	1.01625200
П	-2.40014400	1.03044600	1.91033300
П	-3.04040000	1 26265000	2.00407700
U	-3.04/88100	-1.30303000	2.91755800
Н	-2.30462700	-1.824/1900	3.38214300
H	-3./8/21400	-1.986/6/00	2.88048500
0	-2.88/99500	-2.26508500	-1.41603500
H	-1.90/50000	-2.35223/00	-1.50204800
H	-3.0/150/00	-1.6/308600	-2.17620300
0	-2.26032200	-0.58434700	-3.48553400
H	-2.55615600	-0.17095600	-4.30920300
Н	-1.54699200	-1.23188100	-3.73387600
0	-2.12970700	3.27805700	-1.96588900
Н	-1.67931700	3.83975500	-2.61402500
Η	-1.93870000	3.71683300	-1.09724500
Gd	0.21443700	0.04870500	0.30063200

E= -2725.566017 Hartree

Zero-point correction = 0.528291 Hartree/particle

Sum of electronic and thermal Energies = -2724.993756 Hartree

Sum of electronic and thermal Enthalpies = -2724.992812 Hartree

Sum of electronic and thermal Free Energies = -2725.113212 Hartree

Table S25: Cartesian coordinates (Å) of $[Gd(peada)(H_2O)_2]^-.4H_2O$ complex, optimized at TPSSh/LCRECP/6-31G(d,p), aqueous solution (0 Imaginary Frequency).

Atoms	Х	Y	Z
Ν	-0.32368500	-2.40870000	0.61229000
Ν	2.42950900	-1.38619900	0.04469400
С	0.89181700	-2.94773700	1.26545100
С	2.10662200	-2.80319600	0.34880200
С	-0.65372600	-3.20920600	-0.59755500
С	3.27612500	-0.80163600	1.10946000
С	-0.11804900	-2.60643900	-1.90560400
С	2.48808200	-0.23589800	2.29616200
0	0.11644900	-3.37234000	-2.85504000
0	3.06940100	-0.06261100	3.37426800
0	1.25528600	0.09809500	2.04903400
0	-0.00091800	-1.32236100	-1.91826000
С	3.11259200	-1.24938200	-1.26488100
С	3.06074000	0.22482800	-1.69136500
С	-1.47653800	-2.40160400	1.54076500
0	4.11050000	0.80453800	-2.05896900
0	1.91160100	0.78784200	-1.60866600
С	-2.63193100	-1.66619800	0.89104400
С	-3.97275800	-2.01636900	1.08423600
С	-4.96438200	-1.26677400	0.44720700
С	-4.59421200	-0.18454000	-0.35298400
С	-3.23467800	0.09722500	-0.49708500
Ν	-2.28289700	-0.63652000	0.10213200
Н	-6.01076000	-1.52399600	0.57591200
Н	-4.22907400	-2.86183100	1.71376600
Н	-5.32242500	0.44057500	-0.85572000
С	-2.74693400	1.30898400	-1.26636800
0	-3.58483400	2.15939500	-1.63081500
0	-1.46877900	1.40212400	-1.42469100
Н	1.04073800	-2.40471500	2.20133100
Н	0.76283000	-4.01422100	1.50941100
Н	2.96705000	-3.30698700	0.81289100
Н	1.91217400	-3.31686600	-0.59669300
Н	4.15176200	-1.60141000	-1.23008800
Н	2.55621600	-1.83633600	-2.00104300
Н	4.02524700	-1.51935400	1.46977600
Н	3.82491100	0.04721500	0.68431700
Н	-1.78352400	-3.41684900	1.83011800

Н	-1.17366700	-1.87297400	2.45283600
0	1.05677400	2.63030200	0.22429900
Н	0.47399700	3.22686200	-0.32401100
Н	1.96660600	2.74436900	-0.17158100
0	-1.21661900	1.42419100	1.62915300
Н	-0.61491600	1.95673200	2.21408900
Н	-1.97440200	2.01660800	1.39978600
Н	-1.74238500	-3.24741500	-0.70616900
Н	-0.30755800	-4.24469600	-0.49046300
0	3.50829800	3.17792900	-0.83712000
Н	4.18623100	3.19044900	-0.14569900
Н	3.74654500	2.39546600	-1.40221400
0	0.78160000	2.66813000	2.94140900
Н	1.10142800	1.73978700	2.98798200
Н	1.01433800	2.88788000	2.00706500
0	-3.32966400	3.12904400	1.05767000
Н	-3.59040700	2.99856900	0.12266000
Н	-4.09818100	2.83235900	1.56743400
0	-0.60380300	3.95556300	-1.42050000
Н	-1.02538800	3.07909500	-1.61759400
Н	-0.12802500	4.19484000	-2.22966200
Gd	0.17818700	0.17420500	-0.08925900

E = -1841.788663 Hartree

Zero-point correction = 0.458929 Hartree/particle

Sum of electronic and thermal Energies = -1841.291017 Hartree

Sum of electronic and thermal Enthalpies = -1841.290073 Hartree

Sum of electronic and thermal Free Energies = -1841.399218 Hartree

Table S26: Cartesian coordinates (Å) of $[Gd(peada)(H_2O)_2]^-.4H_2O$ complex, optimized at TPSSh/SCRECP/6-31G(d,p), aqueous solution (0 Imaginary Frequency).

Atoms	Х	Y	Ζ
Ν	-0.32101800	-2.45499800	0.57998800
Ν	2.40347800	-1.36122000	0.05589000
С	0.89663200	-2.98374300	1.23923900
С	2.12018500	-2.78968000	0.34587300
С	-0.66876800	-3.27412300	-0.61213000
С	3.17992600	-0.72135000	1.14798400
С	-0.23915400	-2.64352900	-1.94598300
С	2.29097000	-0.06673100	2.21447300
0	-0.20123300	-3.37424000	-2.94970600
0	2.83060000	0.51014800	3.17903200
0	1.02386100	-0.11424100	2.00071700
0	0.01157600	-1.38017000	-1.91504900
С	3.12321400	-1.20729300	-1.23151200

C	2 00//1600	0 25207100	1 68276400
C C	1 46068000	2 40631200	-1.082/0400
\mathbf{C}	-1.40008900	-2.40031200	2 08008100
0	1 83636800	0.76531600	-2.08778100
C C	-2 62102600	-1 69461000	0.86027600
C C	-2.02102000	-2 02282600	1.07158600
C C	-4.95122300	-2.02202000	0.43634900
C C	-4.57453000	-0.18985800	-0.37186700
C C	-3 21271800	0.06700500	-0.53617200
N	-2 26794000	-0 68459300	0.04953700
Н	-5 99994500	-1 50385700	0.57974500
Н	-4 22755900	-2 85411400	1 71686100
Н	-5 29959600	0 44926400	-0.86142900
C	-2 69755500	1 28032000	-1 28124100
0	-3 51277100	2 15813700	-1 63457000
0	-1 41712200	1 34876300	-1 41697600
н	1.02186300	-2 45482900	2 18498400
Н	0.78612500	-4 05809000	1 45547800
Н	2 98960400	-3 27237000	0.81623200
Н	1 95473600	-3 29558100	-0.60959100
Н	4 17575500	-1 51077600	-1 16412000
Н	2.61633800	-1.82728200	-1.97634200
Н	3.87217700	-1.43039300	1.62335700
Н	3.79575700	0.07692600	0.71992000
Н	-1.76325300	-3.40535600	1.86841500
Н	-1.14200100	-1.82582100	2.39793100
0	1.03913800	2.48662600	0.31617400
Н	0.42401700	3.10524300	-0.16296300
Н	1.91389000	2.66139200	-0.12958300
0	-1.17487000	1.30467600	1.60043800
Н	-0.52943500	1.70477900	2.23633000
Н	-1.81941900	2.01592600	1.37402300
Н	-1.75659000	-3.38749700	-0.66154500
Н	-0.25499900	-4.28669400	-0.52937800
0	3.35900200	3.24433000	-0.93895200
Н	4.07232500	3.29845600	-0.28603800
Н	3.60318000	2.45794900	-1.49729100
0	0.81022600	2.62556800	3.04902300
Н	1.40118600	1.87882700	3.29093900
Н	1.03312100	2.75882800	2.09650600
0	-3.08878100	3.26816300	0.98674700
Н	-3.34028700	3.11386200	0.05282400
Н	-3.86963200	2.98922900	1.48798200
0	-0.56798400	3.91378500	-1.34289500
Н	-0.98084700	3.04094300	-1.57067200
Н	0.04416400	4.09003400	-2.07320400
Gd	0.14866100	0.06071100	-0.12627700

E = -2571.215711 Hartree

Zero-point correction = 0.460043 Hartree/particle Sum of electronic and thermal Energies = -2570.717284 Hartree Sum of electronic and thermal Enthalpies = -2570.716340 Hartree Sum of electronic and thermal Free Energies = -2570.826393 Hartree

Table S27: Cartesian coordinates (Å) of $[Gd(cbda)(H_2O)_3].6H_2O$ complex, corresponding to Gd-O36(w) bond optimized at TPSSh/LCRECP/6-31G(d,p), aqueous solution (1 Imaginary Frequency).

Atoms	Х	Y	Ζ
Ν	2.98410800	-0.28789200	1.34107400
С	3.88011500	0.26622200	0.30036700
Н	4.93993900	0.08953700	0.53016400
Н	3.73729700	1.35289700	0.28092900
С	3.27826800	-1.73855900	1.59111200
С	1.98236100	-2.39429800	2.11098500
0	0.94332800	-2.19522100	1.37816000
0	1.99148000	-3.06748300	3.16348300
Ν	1.41194000	1.96741200	1.61803600
С	2.52944100	1.90166100	2.36051300
С	-0.48830800	3.10112300	0.67330800
0	-1.01613500	1.92700800	0.59558000
0	-0.97873400	4.15777600	0.22408700
0	-0.18631500	-1.59584300	-1.43962100
Ν	2.26010300	-0.63145000	-1.26306300
С	3.54470800	-0.29327400	-1.06159700
С	3.09331400	0.51743000	2.57793800
Н	2.49677300	0.01787500	3.34965300
Н	4.12731900	0.58991700	2.93917400
С	3.10409900	3.04629200	2.92503800
С	2.50690300	4.28735000	2.69731800
С	1.34483300	4.35131000	1.92661200
С	0.82261700	3.16087200	1.42156300
С	4.51257400	-0.44715700	-2.06190400
С	4.12698900	-0.94391600	-3.30675900
С	2.79313200	-1.30339000	-3.51078600
С	1.89788000	-1.14556700	-2.45477800
С	0.45526200	-1.57480200	-2.55339900
0	-0.00962300	-1.88351100	-3.67331200
Н	5.54545600	-0.18384200	-1.86070500
Н	4.85869900	-1.06465600	-4.09884700
Н	2.43880900	-1.71111400	-4.44979600
Н	4.00528000	2.96117900	3.52261700
Н	2.94191100	5.18889500	3.11618800
Н	0.83549200	5.28532800	1.72167900
0	-0.94198100	1.27003800	-2.45282300

Н	-1.53154400	0.59455800	-2.84497400
Н	-1.55232000	1.99033200	-2.17021900
0	-0.15698300	-0.12713300	2.86101200
Н	-0.34917300	-1.00761500	3.29420200
Н	-0.88702100	0.50323600	3.11625600
Н	3.43977200	-2.17181600	0.59782400
С	4.49921700	-2.02866000	2.46519600
Н	4.69399400	-3.10380600	2.45479000
Н	5.39268100	-1.52096600	2.08778500
Н	4.33313700	-1.73373900	3.50391700
0	-1.96886300	-0.96010500	0.62359300
Н	-2.38386200	-1.52916800	-0.09058200
Н	-2.65376300	-0.79377700	1.30818600
0	-0.52157400	-2.52813200	4.03061900
Н	-0.41324900	-2.41830600	4.98712200
Н	0.34980500	-2.89644200	3.72054900
0	-2.20090600	1.58870700	3.13614900
Н	-2.01313000	1.82684700	2.20356200
Н	-2.95760100	0.96765300	3.06680100
0	-3.94472700	-0.47596200	2.51021800
Н	-4.08020900	-1.19054700	3.15115400
Н	-4.81551300	-0.31289100	2.11680600
0	-2.74099400	-2.53780900	-1.35459300
Н	-1.76462100	-2.52387500	-1.48698700
Н	-3.01634500	-1.96795500	-2.10815500
0	-2.50870100	-0.89112200	-3.53502300
Н	-2.95468300	-0.81317900	-4.39056100
Н	-1.65283400	-1.36854300	-3.71133900
0	-2.67168500	3.36762500	-1.76202700
Н	-2.48915400	4.02172400	-2.45258500
Н	-2.15266900	3.69154200	-0.98101000
Gd	0.30604700	-0.14868400	0.46612100

E = -1996.126602 Hartree

Zero-point correction =0.525290 Hartree/particle

Sum of electronic and thermal Energies = -1995.556321 Hartree

Sum of electronic and thermal Enthalpies = -1995.555377 Hartree

Sum of electronic and thermal Free Energies = -1995.677654 Hartree

Table S28: Cartesian coordinates (Å) of $[Gd(cbda)(H_2O)_3].6H_2O$ complex, corresponding to Gd-O39(w) bond optimized at TPSSh/LCRECP/6-31G(d,p), aqueous solution (1 Imaginary Frequency).

Atoms	Х	Y	Ζ
Ν	2.79121300	-0.20155100	1.23500700
С	3.76956700	0.26938500	0.22780600
Н	4.80642700	0.05978700	0.52597500

Н	3.67232600	1.36005700	0.16490900
С	2.93914200	-1.66432500	1.52832800
С	1.58666200	-2.17349100	2.07339900
0	0.55287900	-1.86214600	1.37776200
0	1.55269400	-2.86517600	3.11602600
Ν	1.28009600	2.10837900	1.53123100
С	2.40645900	2.00652400	2.25641300
С	-0.61732400	3.29683600	0.65973300
0	-1.14280700	2.13050500	0.51239400
0	-1.10407700	4.36976300	0.24189700
0	-0.21913000	-1.62919600	-1.57877500
Ν	2.20827700	-0.64272100	-1.37779500
С	3.49116500	-0.33429800	-1.12599400
С	2.93470000	0.60978700	2.46291200
Н	2.31581000	0.15000900	3.24028800
Н	3.97480400	0.64852900	2.81289500
С	3.00277400	3.12533200	2.85080900
С	2.41394600	4.37923900	2.68411300
С	1.23523500	4.48037800	1.94326700
С	0.69686300	3.31501300	1.39941600
С	4.50589400	-0.58261300	-2.05832400
С	4.17185000	-1.15217500	-3.28681400
С	2.84188500	-1.49874900	-3.53506100
С	1.89790400	-1.24474600	-2.54227800
С	0.45735700	-1.66828800	-2.67074300
0	0.02177300	-2.01374700	-3.79320500
Н	5.53478800	-0.33894500	-1.81615800
Н	4.94042000	-1.34541400	-4.02795500
Н	2.52796400	-1.97159800	-4.45781800
Н	3.91246200	3.00787800	3.42998800
Н	2.86492100	5.26033400	3.12900400
Н	0.72645600	5.42421400	1.78765900
0	-0.74450000	1.00615300	-1.95385700
Н	-1.28209600	0.42445600	-2.54533700
Н	-1.24409500	1.86960300	-1.91679600
0	0.05860400	0.28275500	3.54446100
Н	-0.23585600	-0.60637500	3.83157600
Н	-0.78074500	0.79239800	3.44966400
Н	3.05275500	-2.14719800	0.55132500
С	4.12793800	-2.04934100	2.41115900
Н	4.20402700	-3.13862400	2.44845600
Н	5.06746500	-1.65900500	2.00731800
Н	4.00533400	-1.69131900	3.43597500
0	-2.10373300	-0.65979900	0.44910200
Н	-2.48741300	-1.26308200	-0.25321000
Н	-2.43022700	-0.98768700	1.32785500
0	-0.83350300	-2.36346800	4.14908700
Н	-0.80272100	-2.61192600	5.08328900
Н	0.00876000	-2.70775000	3.72353700
0	-2.40260100	1.44235800	3.00922100

Н	-2.15885000	1.62431100	2.07865700
Н	-2.79846900	0.54513100	2.99761100
0	-2.94306600	-1.31669500	2.90478600
Н	-2.22354800	-1.80105200	3.39359000
Н	-3.75062600	-1.84249000	2.99088300
0	-2.84324300	-2.30817800	-1.50020200
Н	-1.86357000	-2.35947400	-1.61488100
Н	-3.06965400	-1.72582700	-2.25581000
0	-2.27197400	-0.63568700	-3.60632100
Н	-2.59023100	-0.25069100	-4.43559600
Н	-1.53062300	-1.25374900	-3.84801500
0	-2.16300200	3.31962300	-2.04821900
Н	-1.75704000	3.88068900	-2.72558500
Н	-1.93737300	3.76613600	-1.19202600
Gd	0.17435900	0.09317100	0.17999200

E = -1996.120215 Hartree

Zero-point correction =0.526972 Hartree/particle

Sum of electronic and thermal Energies =-1995.549678 Hartree

Sum of electronic and thermal Enthalpies = -1995.548864 Hartree

Sum of electronic and thermal Free Energies = -1995.671715 Hartree

Table S29: Cartesian coordinates (Å) of $[Gd(cbda)(H_2O)_3].6H_2O$ complex, corresponding to Gd-O47(w) bond optimized at TPSSh/LCRECP/6-31G(d,p), aqueous solution (1 Imaginary Frequency).

Atoms	Х	Y	Z
Ν	3.08250900	-0.19292300	1.23942700
С	3.92839300	0.37936000	0.16595200
Н	5.00022200	0.24687400	0.36803900
Н	3.74035500	1.45911300	0.13595400
С	3.38436800	-1.64630400	1.46631900
С	2.11418000	-2.28971300	2.05973600
0	1.03601500	-2.07126400	1.39366000
0	2.17822700	-2.97158200	3.10510100
Ν	1.49464800	2.02996500	1.67384800
С	2.66282900	1.96850400	2.33357700
С	-0.49453000	3.16189400	0.92921200
0	-0.99578200	1.98034900	0.82694500
0	-1.04763100	4.22052000	0.56162600
0	-0.11448800	-1.71161400	-1.37392800
Ν	2.29583400	-0.61345600	-1.31851100
С	3.57488300	-0.22855400	-1.16960600
С	3.25957100	0.59038200	2.48066600
Н	2.73027500	0.06425500	3.28402100

Н	4.31408800	0.67080900	2.77473300
C	3.25914300	3.10590700	2.89028900
C	2.62622200	4.34137400	2.74832100
C	1.40578900	4.40249100	2.07411600
C	0.86901100	3 21832700	1 57030800
C C	4 52297000	-0.40711100	-2 18374700
C C	4 12515400	-0 99048900	-3 38680300
C C	2 80252200	-1 41339100	-3 52996900
C C	1 92699500	-1 22093600	-2 46237700
C C	0.50261300	-1 71411900	-2 49930200
0	0.02277200	-2 07430900	-3 60062000
н	5 55118200	-0 10107200	-2 02347600
H	4 84093800	-1.13355600	-2.02347000
н Ц	2 4/120300	-1.135355000	-4.10902900
H	4 20332800	3 01837800	3 41684300
н Ц	3.07609500	5 23870500	3 16035100
н Ц	0.86161900	5 32991600	1 9/1/0500
$\hat{\mathbf{D}}$	0.78610500	0.87540200	1.60247000
U Ц	1 30183600	0.87340200	-1.00247000
н Ц	-1.30185000	1 70880800	-2.21100300 -1.52044700
$\hat{\mathbf{D}}$	-1.32050800	0.13620500	2 74601600
U Ц	0.38210500	1 02060100	2.74001000
и П	-0.38210300	-1.02009100	2 96774700
и П	-1.18525000	0.30307200	2.90774700
II C	1 65228000	1 9/582700	2 26760400
Ч	4.03228000	-1.94382700	2.20700400
н Ц	5 52524800	-1.4/197800	1 84026400
и П	1 55042400	1 65510000	3 31578600
$\hat{\mathbf{D}}$	2 737/0700	1 707/0/00	0.05881200
U Ц	-2.73749700	2 00120200	0.95881200
н Ц	-2.90304300	-2.09139300	1 1859/900
$\hat{0}$	-0.32/02100	-2.49531200	1.10574700
U Ц	-0.32402100	2 20200500	4.00408100
и П	-0.10000000	2 82144300	4.99703700
$\hat{\mathbf{D}}$	2 54637600	1 28112400	3.72337200
U U	-2.34037000	1.38113400	2.02+33300
и П	-2.24280400	0.88371300	2.10901700
$\hat{\mathbf{D}}$	-3.30143200	0.080371300	2.79133300
U Ц	-4.70229700	-0.03048000	2.09428700
и П	5 3785/1000	-0.32133900	1 58011000
$\hat{\mathbf{D}}$	-5.57854900	2 80466200	1.58011000
U U	-2.09982400	-2.80400200	-1.34/11300
II Ц	-1.73302000	-2.02183300	-1.49088500 2 10027400
$\hat{\mathbf{D}}$	-2.90055000	-2.11/42800	2 22052800
U U	-2.27339400	-0.75569400	-3.33033800
п U	-2.0040/000	1 21007500	-+.13/03300
	-1.31969100	-1.3190/300	-3.00/90900
U Ц	-2.33233000	3.121/8/00 2.67775200	-1.39043200
11 Ц	-2.01/00000	3.07773300	-2.31030400
11 Gd	-2.02203100	0.05000000	-0.//31//00
Ju	0.30220800	-0.030300000	0.43237000

E = -1996.118593 Hartree

Zero-point correction =0.525138 Hartree/particle

Sum of electronic and thermal Energies =-1995.548325 Hartree

Sum of electronic and thermal Enthalpies = -1995.547381 Hartree

Sum of electronic and thermal Free Energies = -1995.670645 Hartree

Table S30: Cartesian coordinates (Å) of $[Gd(peada)(H_2O)_2]^-.4H_2O$ complex, corresponding to Gd-O40(w) bond optimized at TPSSh/LCRECP/6-31G(d,p), aqueous solution (1 Imaginary Frequency).

Atoms	Х	Y	Ζ
Ν	-0.34875000	-2.46773100	0.58622000
Ν	2.38404500	-1.37382700	0.03968900
С	0.88532200	-3.00599400	1.20829100
С	2.08816400	-2.80784100	0.28600900
С	-0.70009400	-3.25879300	-0.62462400
С	3.19864400	-0.80855700	1.13992100
С	-0.17939200	-2.65467400	-1.93802000
С	2.37666600	-0.28122300	2.32095200
0	-0.02298800	-3.40944900	-2.90982800
0	2.93293800	-0.11572500	3.41278500
0	1.14185100	0.03308000	2.05535200
0	0.01018000	-1.37739500	-1.92810500
С	3.08073300	-1.16981600	-1.25270700
С	3.00098800	0.31586500	-1.63639100
С	-1.48080700	-2.47745800	1.54304500
0	4.02623400	0.89831300	-2.05722400
0	1.85278000	0.87150600	-1.48384900
С	-2.65736300	-1.74371300	0.92866900
С	-3.99307400	-2.08419200	1.16829700
С	-4.99939700	-1.33295400	0.55634200
С	-4.64994000	-0.26309800	-0.27028000
С	-3.29490100	0.00858100	-0.46235400
Ν	-2.33027400	-0.72235300	0.12018300
Н	-6.04259600	-1.58132100	0.72268600
Н	-4.23505700	-2.92207800	1.81330500
Н	-5.39104400	0.35822100	-0.75868200
С	-2.81725900	1.19727600	-1.27448800
0	-3.65796000	2.04149800	-1.64693300
0	-1.54264300	1.26911200	-1.46130100
Н	1.03483200	-2.49185800	2.16017500
Н	0.77596200	-4.08103500	1.41912700
Н	2.96062400	-3.31575400	0.72200500
Н	1.89350300	-3.28532300	-0.67808600

Н	4.12753700	-1.49743000	-1.21853500
Н	2.54895500	-1.74186100	-2.01827600
Н	3.94651100	-1.52764900	1.49928200
Н	3.74862900	0.05647500	0.75100300
Н	-1.77202600	-3.49767300	1.82942500
Н	-1.15781500	-1.95522900	2.45180200
0	1.37441400	3.15445100	0.44637900
Н	0.70907700	3.43376500	-0.22875200
Н	2.24767200	3.18719800	-0.01830700
0	-1.20407700	1.50475900	1.50134000
Н	-0.61192500	1.99693500	2.13767200
Н	-1.94046900	2.12130000	1.26276900
Н	-1.79007800	-3.29234400	-0.71777700
Н	-0.35594100	-4.29583100	-0.52869400
0	3.77637300	3.35329700	-0.89697500
Н	4.49420700	3.27196800	-0.25201700
Н	3.84459200	2.52031000	-1.43484400
0	0.69937400	2.63759900	2.98915800
Н	1.02924800	1.71414100	3.00935600
Н	1.05522500	2.96192400	2.12041300
0	-3.27258400	3.23699700	0.90675900
Н	-3.56092800	3.02843900	-0.00664100
Н	-4.02426900	2.97991600	1.46134700
0	-0.49021500	3.78890100	-1.48173800
Н	-0.92974300	2.90938600	-1.59901500
Н	-0.02459500	3.94492900	-2.31633200
Gd	0.11145900	0.09187700	-0.09164000

E = -1841.785306 Hartree

Zero-point correction =0.457987 Hartree/particle Sum of electronic and thermal Energies =-1841.288869 Hartree Sum of electronic and thermal Enthalpies = -1841.287925 Hartree Sum of electronic and thermal Free Energies = -1841.397226 Hartree

Table S31: Cartesian coordinates (Å) of $[Gd(peada)(H_2O)_2]^-.4H_2O$ complex, corresponding to Gd-O43(w) bond optimized at TPSSh/LCRECP/6-31G(d,p), aqueous solution (1 Imaginary Frequency).

Atoms	Х	Y	Ζ
Ν	-0.24500500	-2.45498300	0.53957000
Ν	2.50789000	-1.43486100	-0.01320300
С	0.97570200	-3.02882000	1.15303800
С	2.18105000	-2.86123500	0.23239600
С	-0.64487500	-3.24709500	-0.65414300
С	3.27565800	-0.86940300	1.12166200

C -0.12586400 -2.6830 C 2.40114000 -0.34120 O -0.00337200 -3.4576	9100 -1.98612900
C 2.40114000 -0.34120 -0.00337200 -3.4576	
0 -0.00337200 -3.4576	0100 2.26548300
	5000 -2.94543500
O 2.87983300 -0.2436	6900 3.39887100
O 1.20208900 0.04152	2800 1.92146400
O 0.09440100 -1.4079	7700 -2.00857800
С 3.27479600 -1.2679	8900 -1.27202700
C 3.21924700 0.2106'	7800 -1.67654100
C -1.35138800 -2.4187	7300 1.52305100
O 4.27324900 0.8320	0300 -1.94244000
O 2.04564700 0.7331	1000 -1.67712000
C -2.51946800 -1.6500	0.94369700
C -3.85438500 -1.9595	7800 1.22765400
С -4.86300600 -1.1735	6600 0.66779500
C -4.51333100 -0.0967	4800 -0.14924300
C -3.15978800 0.1420	8500 -0.38499300
N -2.19083300 -0.6261	3000 0.13955300
Н -5.90573300 -1.3981	6200 0.86746600
Н -4.09233300 -2.8017	4200 1.86854800
Н -5.25360600 0.5542	-0.59859300
C -2.68930100 1.3320	0600 -1.19037100
O -3.52116300 2.1971	0300 -1.53212000
O -1.42093200 1.3832	5400 -1.43000800
Н 1.14220100 -2.5266	5000 2.10875400
Н 0.83796500 -4.1011	4400 1.36179600
Н 3.04253100 -3.3885	0300 0.66800600
Н 1.97435100 -3.3319	0200 -0.73264100
Н 4.31424300 -1.6053	8600 -1.17374000
Н 2.77606200 -1.8527	0200 -2.05002000
Н 4.00444200 -1.5901	0200 1.51485900
Н 3.84209100 -0.0051	6700 0.75467400
Н -1.66805600 -3.4261	1400 1.82830400
Н -0.98517200 -1.8983	2200 2.41617500
O 0.98676400 2.5681	8000 0.10556500
Н 0.45733500 3.1680	9200 -0.49230600
Н 1.93594500 2.7075	8300 -0.17966000
O -1.80783700 1.6397	0200 2.04091700
Н -1.03440500 2.1208	5000 2.41628100
Н -2.41680100 2.3318	1700 1.70180300
Н -1.73703400 -3.2371	2900 -0.72968100
Н -0.34092000 -4.2961	6400 -0.55157000
Q 3.51164700 3.14664	4800 -0.68523900
H 4.13078700 3.1481	5500 0.05946100
H 3.81476200 2.3940	9500 -1.25841400
11 0.01 ,0200 2.0 ,010	8600 2.84017300
O 0.64558400 2.6118	2.0101/200
O 0.64558400 2.61183 H 0.88689500 1.65940	0700 2.83054400
O 0.64558400 2.61183 H 0.88689500 1.65944 H 0.81216100 2.8328	0700 2.83054400 1200 1.89450800
O0.645584002.6118H0.886895001.6594H0.812161002.8328O-3.684043003.4890	07002.8305440012001.8945080005000.96793300
O 0.64558400 2.61183 H 0.88689500 1.65944 H 0.81216100 2.8328 O -3.68404300 3.4890 H -3.74790800 3.1578	07002.8305440012001.8945080005000.9679330057000.04617400

0	-0.53414100	3.91824500	-1.64300700
Н	-0.99406700	3.04975000	-1.77416800
Н	-0.02698500	4.05891100	-2.45644500
Gd	0.27581600	0.10108200	-0.24014300

E = -1841.780614 Hartree

Zero-point correction = 0.457826 Hartree/particle

Sum of electronic and thermal Energies = -1841.284112 Hartree

Sum of electronic and thermal Enthalpies = -1841.283168 Hartree

Sum of electronic and thermal Free Energies = -1841.393598 Hartree

Table S32: Cartesian coordinates (Å) of $[Gd(cbda)(H_2O)_3].6H_2O$ complex, corresponding to Gd-O36(w) bond optimized at TPSSh/SCRECP/6-31G(d,p), aqueous solution (1 Imaginary Frequency).

Atoms	Х	Y	Ζ
Ν	2.87103100	-0.29148200	1.35675300
С	3.83972600	0.19465800	0.34408300
Н	4.87569400	-0.04991700	0.61492200
Н	3.76784600	1.28790600	0.31492000
С	3.06992000	-1.75432000	1.64267700
С	1.71805000	-2.30978700	2.13301200
0	0.71251600	-2.03261300	1.38393100
0	1.64894500	-2.97563400	3.19088300
Ν	1.41827400	2.02411600	1.52336400
С	2.49421600	1.93456900	2.32150300
С	-0.46041200	3.16566100	0.56274500
0	-0.92547200	1.98239900	0.37522800
0	-0.99607000	4.23415600	0.19591000
0	-0.25897700	-1.42496600	-1.44772000
Ν	2.21511200	-0.60962000	-1.25318600
С	3.51283400	-0.35042300	-1.02306800
С	2.99584300	0.53399200	2.58003400
Н	2.35997800	0.08556700	3.35197800
Н	4.02524100	0.56332400	2.95932600
С	3.05930500	3.06569300	2.92135600
С	2.48365300	4.31561400	2.68488500
С	1.34451500	4.39896200	1.88206900
С	0.83562300	3.22135600	1.33563200
С	4.49336200	-0.57434400	-1.99706300
С	4.10767500	-1.06347100	-3.24507700
С	2.76040600	-1.35054300	-3.47517900
С	1.85224700	-1.12513300	-2.44348900
С	0.39488800	-1.48923700	-2.55132900

0	-0.06505800	-1.83625900	-3.66212900
Н	5.53529900	-0.37280800	-1.77318100
Н	4.84929200	-1.23813800	-4.01761000
Н	2.40508000	-1.75649200	-4.41456900
Н	3.93216600	2.96376600	3.55706600
Н	2.91155200	5.20767700	3.13062500
Н	0.84124100	5.33783700	1.68432200
0	-0.75837200	1.32099500	-2.54745000
Н	-1.40215200	0.68245800	-2.91209800
Н	-1.32384200	2.07905700	-2.27714600
0	-0.19668200	0.16374100	2.75050500
Н	-0.36161300	-0.66060000	3.27087000
Н	-0.98254100	0.75492700	2.90496500
Н	3.23316200	-2.21640400	0.66267100
С	4.24082900	-2.10122100	2.56188300
Н	4.36030200	-3.18709400	2.58644500
Н	5.17803200	-1.66748000	2.19944600
Н	4.06470400	-1.76559800	3.58648200
0	-1.96897900	-0.65157800	0.60959500
Н	-2.41661200	-1.15173500	-0.13177500
Н	-2.33268000	-1.02211000	1.45259100
0	-0.71194100	-2.18627900	4.10875700
Н	-0.56686600	-2.10261000	5.06236400
Н	0.08961400	-2.66932200	3.74487000
0	-2.56641300	1.42933600	2.73933600
Н	-2.43269900	1.50195700	1.77355300
Н	-3.00555400	0.56255100	2.86098300
0	-3.01858700	-1.37208500	2.98556000
Н	-2.28268500	-1.82567800	3.46733800
Н	-3.75897900	-1.99407500	2.95048000
0	-2.86529000	-2.21370000	-1.35524900
Н	-1.88815500	-2.27753000	-1.45888000
Н	-3.08086300	-1.67283700	-2.14876400
0	-2.51175700	-0.72954600	-3.62141000
Н	-2.93376200	-0.64871900	-4.48851600
Н	-1.67897400	-1.25592100	-3.76505100
0	-2.46662800	3.51076400	-1.97889800
Н	-2.14927700	4.16413300	-2.61950400
Н	-2.04707000	3.79570300	-1.12630000
Gd	0.31865600	-0.02542800	0.40072300

E = -2725.557573 Hartree

Zero-point correction =0.527198 Hartree/particle Sum of electronic and thermal Energies =-2724.986319 Hartree Sum of electronic and thermal Enthalpies = -2724.985375 Hartree Sum of electronic and thermal Free Energies = -2725.106814 Hartree **Table S33:** Cartesian coordinates (Å) of $[Gd(cbda)(H_2O)_3].6H_2O$ complex, corresponding to Gd-O39(w) bond optimized at TPSSh/SCRECP/6-31G(d,p), aqueous solution (1 Imaginary Frequency).

Atoms	Х	Y	Z
Ν	2.77720800	-0.20113000	1.22221700
С	3.75006600	0.28689200	0.21681300
Н	4.78918500	0.07691900	0.50578200
Н	3.64772200	1.37751300	0.16640500
С	2.92218800	-1.66756200	1.49782800
С	1.57766800	-2.14995200	2.07898600
0	0.53017700	-1.76771700	1.44461800
0	1.55825400	-2.87802100	3.09720200
Ν	1.28875900	2.08589400	1.52580400
С	2.40299100	1.98739900	2.26819300
С	-0.61448600	3.25011000	0.66058200
0	-1.08940400	2.07058300	0.46921100
0	-1.14414300	4.31835200	0.28240400
0	-0.23098200	-1.64332400	-1.46833600
Ν	2.17371800	-0.63810200	-1.35514700
С	3.45682800	-0.30705200	-1.13670200
С	2.92692800	0.58972800	2.46312300
Н	2.30362400	0.12531500	3.23498700
Н	3.96645100	0.61488500	2.81505500
С	2.98256900	3.10362400	2.88272800
С	2.38390600	4.35401200	2.72250200
С	1.21125800	4.45062400	1.97155800
С	0.69281000	3.28639300	1.40657900
С	4.45089500	-0.53490700	-2.09573200
С	4.09518200	-1.11679200	-3.31250300
С	2.76788000	-1.49936500	-3.51993500
С	1.84605300	-1.25912800	-2.50380000
С	0.41553500	-1.72220800	-2.57542500
0	-0.03927100	-2.13308000	-3.66856300
Н	5.48059200	-0.26896100	-1.88252300
Н	4.84679700	-1.29521900	-4.07445800
Н	2.44025700	-1.99010500	-4.42841800
Н	3.88533100	2.98748900	3.47279200
Н	2.82096900	5.23438800	3.18246800
Н	0.69136400	5.38976900	1.82428300
0	-0.58705500	0.97389100	-1.92257200
Н	-1.16270200	0.41068600	-2.49376100
Н	-1.04770600	1.85741400	-1.90989400
0	-0.01697500	0.40624500	3.51074700
Н	-0.26165900	-0.48307400	3.83749400
Н	-0.88107900	0.86009000	3.38048000
Н	3.00069900	-2.14522300	0.51510800

С	4.12859600	-2.07356600	2.34577400
Н	4.18748700	-3.16405900	2.37689800
Н	5.06294300	-1.69702200	1.91775400
Н	4.04013400	-1.71846800	3.37519300
0	-2.01038800	-0.61580700	0.50002000
Н	-2.44721800	-1.15424600	-0.22129200
Н	-2.29311400	-1.02465900	1.36036400
0	-0.77095800	-2.27892000	4.20847200
Н	-0.74776900	-2.56124300	5.13302800
Н	0.04621000	-2.65410200	3.76209000
0	-2.56487300	1.38012400	2.87300500
Н	-2.31022300	1.51972100	1.93872100
Н	-2.90282300	0.46092400	2.90103800
0	-2.89732900	-1.42455800	2.88820400
Н	-2.16529600	-1.85515000	3.41044200
Н	-3.64335100	-2.04018200	2.87982100
0	-2.88828800	-2.21722800	-1.43400600
Н	-1.91206400	-2.33555200	-1.52061400
Н	-3.05885200	-1.63459400	-2.20437900
0	-2.23346400	-0.59580200	-3.54694300
Н	-2.53358000	-0.20016900	-4.37786100
Н	-1.53649500	-1.26248400	-3.78557200
0	-1.97733900	3.31243900	-2.11702500
Н	-1.48141300	3.89166600	-2.71455000
Н	-1.85822700	3.72995400	-1.22605000
Gd	0.22514500	0.09103300	0.19169200

E = -2725.554928 Hartree

Zero-point correction = 0.527388 Hartree/particle

Sum of electronic and thermal Energies =-2724.983888 Hartree

Sum of electronic and thermal Enthalpies = -2724.982944 Hartree

Sum of electronic and thermal Free Energies = -2725.104848 Hartree

Table S34: Cartesian coordinates (Å) of $[Gd(cbda)(H_2O)_3].6H_2O$ complex, corresponding to Gd-O47(w) bond optimized at TPSSh/SCRECP/6-31G(d,p), aqueous solution (1 Imaginary Frequency).

Atoms	Х	Y	Ζ
Ν	2.91378600	-0.13385700	1.22054500
С	3.82068600	0.33565400	0.14431800
Н	4.87821900	0.16610000	0.38850700
Н	3.68176600	1.41843300	0.04104000
С	3.12554800	-1.59328100	1.51633500
С	1.79248100	-2.13907900	2.05731500

\cap	0 75867000	-1 81032300	1 37131300
0	1 76703500	-1.81932300	3 00123300
U N	1.70705500	-2.84/18900	1 54760000
IN C	2 53614400	2.13138700	2 26088600
C C	2.33014400	2.00997000	2.20988000
	-0.32298300	3.29141000	0.08300800
0	-0.93303800	2.11041000	0.41911200
0	-1.06940800	4.36//8/00	0.34/55600
U N	-0.32892000	-1.524/3500	-1.32652800
N	2.16912900	-0.6/4/6600	-1.29498400
C	3.465 / /000	-0.350/3400	-1.1532/900
C	3.10553700	0.68308900	2.43866300
H	2.55831500	0.19266400	3.25308800
Н	4.15983100	0.74083400	2.73807200
C	3.09631500	3.19057700	2.89405600
С	2.45817800	4.42513500	2.76594900
С	1.27203000	4.50223100	2.03395900
С	0.77638300	3.33655900	1.45214400
С	4.41555600	-0.66868200	-2.13026900
С	4.00125200	-1.34103500	-3.28084000
С	2.65949600	-1.70480400	-3.40942600
С	1.77978600	-1.36189200	-2.38420800
С	0.32191400	-1.74551900	-2.41316800
0	-0.15615400	-2.21449800	-3.47156300
Н	5.45665200	-0.40390900	-1.98119800
Н	4.71870600	-1.59621800	-4.05378800
Н	2.28506100	-2.24986300	-4.26738700
Н	4.01308800	3.09120300	3.46512000
Н	2.87812300	5.30974700	3.23360800
Н	0.72680700	5.42988800	1.90726800
0	-0.23105900	1.10204900	-1.94345600
Н	-0.87597900	0.58462800	-2.48116400
Н	-0.61797100	2.01807300	-1.95117700
0	-0.54395100	0.22441400	2.50281500
Н	-0.51977600	-0.61269200	3.02624600
Н	-1.44320300	0.62350200	2.66716700
Н	3.25302500	-2.07320200	0.54081200
С	4.33382400	-1.93235300	2.38973200
Н	4.44903100	-3.01838700	2.42082500
Н	5.25549900	-1.50738200	1.97963100
Н	4.20793800	-1.58520200	3.41791100
0	-3.04959100	-0.66252600	0.73081100
Н	-3.21563500	-1.12469300	-0.12853100
Н	-3.08504800	-1.34742500	1.42903900
0	-0.59749500	-2.10740800	4.03013400
Н	-0.41272400	-1.91893800	4.96155500
Н	0.22391500	-2.55919500	3.66995400
0	-3.12973300	0.90013300	2.89672300
Н	-3.28399400	0.65712100	1.95426100
Н	-3.30769100	0.03471500	3.32533700
0	-3.16392200	-1.87717200	3.24343000

Н	-2.26448200	-2.13198300	3.56470000
Н	-3.77986500	-2.53139400	3.60034200
0	-3.06178700	-2.03534200	-1.59969700
Н	-2.08332400	-2.06525200	-1.47805000
Н	-3.12532100	-1.38299500	-2.32660300
0	-2.08302300	-0.31778200	-3.54043200
Н	-2.28789900	0.08370800	-4.39729900
Н	-1.49303000	-1.09020300	-3.73089000
0	-1.50540900	3.51739400	-2.21261400
Н	-0.92245700	4.13368100	-2.68015700
Н	-1.54095300	3.87710400	-1.29033200
Gd	0.33419100	0.15544200	0.28522100

E = -2725.549625 Hartree

Zero-point correction =0.527535 Hartree/particle

Sum of electronic and thermal Energies = -2724.978198 Hartree

Sum of electronic and thermal Enthalpies = -2724.977254 Hartree

Sum of electronic and thermal Free Energies = -2725.098641 Hartree

Table S35: Cartesian coordinates (Å) of [Gd(peada)(H₂O)₂]⁻.4H₂O complex, corresponding to Gd-O43(w) bond optimized at TPSSh/SCRECP/6-31G(d,p), aqueous solution (1 Imaginary Frequency).

Atoms	Х	Y	Z
Ν	-0.24826300	-2.55373600	0.46464800
Ν	2.47051100	-1.41634500	-0.00215100
С	0.98342600	-3.10122300	1.08345400
С	2.19972400	-2.86192400	0.19783100
С	-0.66268800	-3.37195000	-0.70524600
С	3.11257300	-0.81015100	1.19537200
С	-0.18330300	-2.81498500	-2.05449100
С	2.11468700	-0.17980300	2.18095600
0	-0.17291200	-3.57120300	-3.03499200
0	2.55417500	0.33050800	3.22736000
0	0.87721100	-0.16987500	1.81803600
0	0.13158200	-1.55918900	-2.06160100
С	3.31700400	-1.20058400	-1.20297000
С	3.16714300	0.25882200	-1.64685500
С	-1.33451500	-2.49620700	1.46970400
0	4.18163600	0.94906000	-1.89771800
0	1.95836500	0.68596300	-1.70499400
С	-2.50261300	-1.71302400	0.91644400
С	-3.83670500	-1.98310000	1.24108100
С	-4.83747600	-1.16130100	0.71925800
С	-4.48158900	-0.08899800	-0.10155800
С	-3.13083700	0.10455300	-0.38555900

Ν	-2.17042500	-0.69773100	0.10286300
Н	-5.87949500	-1.35361500	0.95356000
Н	-4.08022900	-2.81993400	1.88666400
Н	-5.21509500	0.59128900	-0.51727700
С	-2.63549700	1.27498600	-1.20175700
0	-3.43288800	2.19035900	-1.49285900
0	-1.38112400	1.25377900	-1.50440300
Н	1.11542000	-2.61372300	2.05123400
Н	0.88000400	-4.18217500	1.26307400
Н	3.07313100	-3.36393200	0.64000200
Н	2.03471300	-3.30934200	-0.78610800
Н	4.36910200	-1.45354200	-1.02432100
Н	2.92661600	-1.83382200	-2.00490800
Н	3.74765000	-1.53492800	1.72243100
Н	3.77107100	0.00002600	0.86409700
Н	-1.65529100	-3.49609600	1.79410400
Н	-0.94101900	-1.96384400	2.34345500
0	0.85857400	2.34626500	0.20119400
Н	0.27080900	2.98120700	-0.29066900
Н	1.76475500	2.58164500	-0.15189400
0	-1.72559400	1.68342500	2.00822400
Н	-0.89879900	2.00005700	2.43277600
Н	-2.15189600	2.48651000	1.64423700
Н	-1.75666200	-3.38373100	-0.75349600
Н	-0.33928600	-4.41477400	-0.59720100
0	3.21688500	3.24885700	-0.80161500
Н	3.85586100	3.36141900	-0.08245000
Н	3.58546600	2.49818600	-1.33910200
0	0.77436000	2.64524800	2.96829900
Н	1.25203500	1.83052600	3.23305600
Н	0.88721100	2.63945100	1.98878300
0	-3.24579800	3.81615900	0.80184200
Н	-3.35628400	3.37576200	-0.06848800
Н	-4.08454700	3.64135000	1.25377500
0	-0.58208100	3.85078000	-1.53507600
Н	-0.99153600	2.98231600	-1.77355900
Н	0.10361800	3.98786900	-2.20630400
Gd	0.23766400	-0.07375400	-0.36084500

E = -2571.207447 Hartree

Zero-point correction = 0.458374 Hartree/particle Sum of electronic and thermal Energies = -2570.710493 Hartree Sum of electronic and thermal Enthalpies = -2570.709549 Hartree Sum of electronic and thermal Free Energies = -2570.821214 Hartree **Table S36:** Cartesian coordinates (Å) of $[Gd(peada)(H_2O)_2]^-.4H_2O$ complex, corresponding to Gd-O40(w) bond optimized at TPSSh/SCRECP/6-31G(d,p), aqueous solution (1 Imaginary Frequency).

Atoms	Х	Y	Ζ
Ν	-0.33604500	-2.43598500	0.74901100
Ν	2.30464900	-1.27107700	-0.00073700
С	0.94073900	-2.91729500	1.33227200
С	2.09768700	-2.70078500	0.35859900
С	-0.76292400	-3.31150800	-0.37550700
С	3.09631900	-0.55154400	1.03008100
С	-0.39879600	-2.75800100	-1.76129100
С	2.23443400	0.02568900	2.16403800
0	-0.40730600	-3.53826200	-2.72584700
0	2.80363300	0.58989200	3.11764500
0	0.95935400	-0.06521000	2.01232500
0	-0.14954800	-1.49298600	-1.80734400
С	2.96273600	-1.15426300	-1.32550200
С	2.77257500	0.25916900	-1.89030700
С	-1.39976500	-2.36217900	1.77890700
0	3.72836500	0.82568600	-2.46399700
0	1.60276600	0.76720600	-1.72055000
С	-2.60807500	-1.65879400	1.19458300
С	-3.93141000	-1.96291000	1.53132000
С	-4.96106800	-1.21627800	0.95286000
С	-4.64701800	-0.18160000	0.06858700
С	-3.30356400	0.05209500	-0.22422400
Ν	-2.31879300	-0.68229200	0.31956900
Н	-5.99567400	-1.43693500	1.19507500
Н	-4.14668400	-2.76682300	2.22687500
Н	-5.40778000	0.44129900	-0.38643300
С	-2.83876400	1.20597600	-1.09002900
0	-3.66427100	2.09058000	-1.40259200
0	-1.58360000	1.21247700	-1.37277100
Н	1.10928800	-2.37497900	2.26269300
Н	0.87900200	-3.99120500	1.56643800
Н	3.01533000	-3.12719500	0.78903200
Н	1.89665900	-3.24663100	-0.56736800
Н	4.03017300	-1.40308100	-1.28437200
Н	2.46188000	-1.84499300	-2.01004400
Н	3.89168500	-1.18470000	1.44674900
Н	3.58795600	0.30371200	0.55413600
Н	-1.67611000	-3.35300900	2.16521000
Н	-1.00877000	-1.76819100	2.61354300
0	1.49789700	2.59281700	0.38370400
Н	0.96744800	3.01741200	-0.33516000
Н	2.42492700	2.69069000	0.04722400

0	-1.03582200	1.65591700	1.39055800
Н	-0.40275200	1.97218000	2.08723800
Н	-1.46359300	2.46491900	1.01604800
Н	-1.85367800	-3.40388600	-0.35739800
Н	-0.35996300	-4.32514500	-0.26076700
0	3.94074800	2.98990600	-0.81573800
Н	4.72897800	2.75790500	-0.30368800
Н	3.90945400	2.31562600	-1.53909500
0	0.89574700	2.76968100	3.01379500
Н	1.43572700	1.99484100	3.28390900
Н	1.22320200	2.92057800	2.09259400
0	-2.33274900	3.87364900	0.30638600
Н	-2.84811600	3.44307400	-0.41238800
Н	-3.00334200	4.11958600	0.96098600
0	0.27908400	3.18347800	-2.01722300
Н	-0.56794200	2.69660500	-1.90954700
Н	0.89780100	2.44952800	-2.22641300
Gd	0.05312500	0.02291200	-0.10324700

E = -2571.216702 Hartree

Zero-point correction = 0.460896 Hartree/particle

Sum of electronic and thermal Energies = -2570.718522 Hartree

Sum of electronic and thermal Enthalpies = -2570.717578 Hartree

Sum of electronic and thermal Free Energies = -2570.824669 Hartree

Table S37: Cartesian coordinates (Å) of $[Gd(cbda)(H_2O)_3].6H_2O$ complex, optimized at TPSSh/SARC-ZORA/6-31G(d,p), aqueous solution (0 Imaginary Frequency).

Atoms	Х	Y	Ζ
Ν	2.85851000	-0.22740300	1.27704100
С	3.80423200	0.26014500	0.24946000
Н	4.85119100	0.06285900	0.52193800
Н	3.69191800	1.34937900	0.19084800
С	3.04186800	-1.68782700	1.56125900
С	1.68982400	-2.23163700	2.06837500
0	0.68301700	-1.98482800	1.31180500
0	1.62158200	-2.87110000	3.14447100
Ν	1.37009900	2.10314300	1.53990700
С	2.48741800	1.99406100	2.27556900
С	-0.55441300	3.28476900	0.72354500
0	-1.08961400	2.12064200	0.61940000
0	-1.06159900	4.35571700	0.31965900

0	-0.22082500	-1.64928200	-1.51940800
N	2 21764400	-0.66378300	-1 32719000
C	3 50123700	-0 34088400	-1 10077600
C	2,99720900	0.59053100	2 49817200
н	2 38039500	0.12998200	3 27834000
Н	4 03335100	0.62321800	2 86171500
C II	3 0918/300	3 11002700	2.80171300
C	2 51 530100	J.11002700 4 36848400	2.68855500
C	2.31330100	4.30848400	2.08855500
C	0.78748300	3 30808500	1.93100400
C	0.78748300	0.56250500	2.05761100
C	4.49978700	-0.30230300 1 11877200	-2.03701100
C	4.14/13/00	-1.116/7500	-3.28708700
C	2.81309300	-1.4/443300	-5.51282000
C	1.88908900	-1.24001500	-2.49589400
	0.44837000	-1.0/114/00	-2.01359500
U II	0.00355900	-2.00278300	-3./3934500
H	5.53041900	-0.30//1800	-1.83415200
H	4.90189800	-1.29208500	-4.04719000
H	2.48686000	-1.93295100	-4.43769000
H	3.99579300	2.98807000	3.45511800
H	2.97277100	5.24860100	3.128/0400
Н	0.82824900	5.42009100	1.80025800
0	-0.76642900	1.00100000	-1.85376200
Н	-1.29570600	0.42129200	-2.45232400
Н	-1.29141900	1.84493200	-1.78866600
0	-0.25552800	0.16936100	2.74892900
Н	-0.43420900	-0.68059000	3.21794100
Н	-1.02630900	0.76026800	2.95750300
Н	3.18767400	-2.15651900	0.58224000
С	4.22341200	-2.04814200	2.46418400
Н	4.33750200	-3.13486500	2.48437700
Н	5.15695700	-1.61908900	2.08624900
Н	4.06777800	-1.71221000	3.49200100
0	-2.12833300	-0.70116600	0.49389100
Н	-2.50223300	-1.30357900	-0.21132100
Н	-2.50723000	-0.99794400	1.35917600
0	-0.80051200	-2.23797900	4.03541700
Н	-0.65528700	-2.13204000	4.98703400
Н	0.03959200	-2.65250800	3.67174200
0	-2.60940500	1.48258600	2.95717400
Н	-2.46604900	1.72372800	2.01994900
Н	-3.04624900	0.60552000	2.93900100
0	-3.10246100	-1.31544800	2.93523500
н	-2.36132600	-1 78763100	3 38991300
Н	-3 86871700	-1 90631800	2,95823700
0	-2.84635500	-2.34592600	-1.47831500
Ĥ	-1 86429300	-2.39821000	-1 57069600
H	-3 05243400	-1 74353300	-2 22558900
0	-2 28874900	-0 63485900	-3 54307700
й	-2 61812100	-0 2541/100	-4 36985600
**	2.01012100	J. 2J 11 TIUU	1.50705000

Η	-1.53731900	-1.24085100	-3.78788900
0	-2.23401700	3.30655000	-1.90812400
Η	-1.81430300	3.84659200	-2.59455200
Η	-1.96827500	3.74707000	-1.05948000
Gd	0.17767100	0.04781600	0.28230200

E = -12776.596791 Hartree

Zero-point correction = 0.526044 Hartree/particle

Sum of electronic and thermal Energies = -12776.026084 Hartree

Sum of electronic and thermal Enthalpies = -12776.025140 Hartree

Sum of electronic and thermal Free Energies = -12776.147777 Hartree

Table S38: Cartesian coordinates (Å) of $[Gd(peada)(H_2O)_2]^-.4H_2O$ complex, optimized at TPSSh/SARC-ZORA/6-31G(d,p), aqueous solution (0 Imaginary Frequency).

Atoms	Х	Y	Ζ
Ν	-0.33356800	-2.46543100	0.54037500
Ν	2.43049500	-1.38593300	0.05428800
С	0.88237600	-2.99301900	1.20227800
С	2.11554200	-2.80967300	0.32150700
С	-0.66241100	-3.26204400	-0.66842200
С	3.19022900	-0.76336800	1.16596500
С	-0.15659600	-2.64175400	-1.97968700
С	2.30178500	-0.03159500	2.18191400
0	0.01969400	-3.38447600	-2.95824000
0	2.84074900	0.60001200	3.11252000
0	1.03282800	-0.08147800	1.97348900
0	-0.00219000	-1.35931700	-1.96753200
С	3.16900600	-1.22683900	-1.21899900
С	3.08842400	0.23995100	-1.65957200
С	-1.47639200	-2.45904400	1.47852800
0	4.12837500	0.84360900	-2.01727600
0	1.92289700	0.77132200	-1.60333200
С	-2.64491300	-1.71957600	0.86111600
С	-3.98083600	-2.06263200	1.09995500
С	-4.99017600	-1.29176200	0.51910000
С	-4.64185800	-0.19506600	-0.27180400
С	-3.28657900	0.07286100	-0.46970900
Ν	-2.31781800	-0.68224000	0.07378700
Н	-6.03296900	-1.54127200	0.68635200
Н	-4.21972600	-2.91686500	1.72464500
Н	-5.38371400	0.45068200	-0.72634000
С	-2.81496600	1.29533900	-1.22871400
0	-3.65117100	2.17164100	-1.53319700

0	-1.54471500	1.36738600	-1.44491600
Н	1.00413200	-2.46222500	2.14818100
Н	0.76750600	-4.06699100	1.42162300
Н	2.97006800	-3.31519900	0.79665400
Н	1.95186300	-3.30229400	-0.64111400
Н	4.21604600	-1.54781100	-1.13959800
Н	2.66676200	-1.83186600	-1.97938700
Н	3.81176500	-1.50231500	1.69178800
Η	3.87666100	-0.01820500	0.75125700
Н	-1.77913100	-3.47588800	1.76951400
Н	-1.15903500	-1.93428000	2.38762300
0	1.06789300	2.63067600	0.24448600
Н	0.48723900	3.19973300	-0.32990500
Н	1.98082100	2.75655200	-0.13733800
0	-1.20167600	1.40502200	1.63172300
Н	-0.52939300	1.83173500	2.22390800
Н	-1.88015200	2.09397100	1.43177800
Н	-1.75165100	-3.32074800	-0.76556000
Н	-0.29568100	-4.29222700	-0.57668800
0	3.54475400	3.18495000	-0.75531100
Н	4.18614100	3.13266100	-0.03114600
Н	3.77472000	2.41371200	-1.33971200
0	0.83195500	2.72068300	2.96998800
Н	1.43494600	1.97778800	3.19670400
Н	1.03907400	2.87645900	2.01693200
0	-3.20879000	3.26539900	1.07746300
Н	-3.49047300	3.08382100	0.15640900
Η	-3.95960600	2.97360700	1.61618500
0	-0.55090700	3.88393600	-1.53462300
Н	-1.03009500	3.02495800	-1.66574400
Н	-0.01596700	3.99072100	-2.33567000
Gd	0.13694300	0.13208000	-0.17114700

E = -12622.251105 Hartree

Zero-point correction = 0.457961 Hartree/particle Sum of electronic and thermal Energies = -12621.754059 Hartree Sum of electronic and thermal Enthalpies = -12621.753115 Hartree Sum of electronic and thermal Free Energies = -12621.865748 Hartree

References

- 1. M. Khannam, S. K. Sahoo and C. Mukherjee, *Eur. J. Inorg. Chem.*, 2019, **2019**, 2518–2523.
- 2. B. Phukan, C. Mukherjee and R. Varshney, *Dalton Trans.*, 2018, 47, 135–142.