Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information (ESI)

Catalytic ozonation of dichloromethane at low temperature and even room temperature on Mnloaded catalysts

Yaxin Duan^a, Peixi Liu^a, Fawei Lin^b, Yong He^a, Yanqun Zhu^a, Zhihua Wang^a

^aState Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P.R. China ^bSchool of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P.R. China

*Corresponding authors. *E-mail Address:* <u>wangzh@zju.edu.cn</u> (ZH. Wang)

Fig. S1. DCM conversion curves at $100 \sim 450$ °C of O₂ catalytic oxidation over the samples.

Fig. S2. Stability performance of the M/A-II with O₃/DCM=6 at 20 °C. (conditions: DCM initial concentration = 100 ppm; GHSV \approx 30000 h⁻¹).

Fig. S3. (a) ~ (e) SEM and (f) ~ (j) EDS mapping images of all catalysts. (a) ~ (e) and (f) ~ (j) correspond to M/A-I, M/A-II, M/T, M/Z-I and M/Z-II in order, respectively.

Fig. S4. TEM images of all catalysts. (a) and (b) correspond to M/A-I, and (c) \sim (f) correspond to M/A-II, M/T, M/Z-I and M/Z-II, respectively. (Due to the lack of high photographic magnification, the M/A-I data can be roughly FFT measured to a lattice spacing of 2.41 Å, which can correspond to the converted lattice spacing of PDF# 04-0877 for Al₂O₃)

Fig. S5. N₂ adsorption and desorption isotherms and pore size distribution curves of Mn-loaded catalysts.

Fig. S6. Py-IR spectra of M/Z-II, M/T and M/A-II.

Fig. S7. XPS spectrum of S 2p after SO₂ single and both SO₂ and H₂O effect.

Fig. S8. Byproducts concentration of DCM ozone catalytic oxidation on M/A-II with the dynamic effects of SO₂.

Fig. S9. XPS spectrum of Cl 2p after (a) 20 °C stability test (b) 120 °C stability test and (c) 120 °C H₂O effect test; and the Mn $2p_{2/3}$ after catalytic ozonation on the M/A-II with the effects of (d) SO₂ and (e) simultaneous presence of water vapor and SO₂.

Fig. S10. Carbon/chlorine balance plots for all catalytic reactions in this study. (a) and (b) are the five catalysts carbon balance and chlorine balance from 20 \sim 120 °C reactions, respectively, corresponding to Fig. 2 (a) ~ (d) in the revised version; (c) is the reaction of changing the initial molar ratio of O₃/DCM at 120 °C on M/A-II, corresponding to Fig. 2 (e) ~ (f) in the revised version. Fig. 2 (e) ~ (f) in the revised version. (d) to (f) are the reactions at 120 °C on M/A-II when SO₂, water vapor, and both SO₂ and water vapor are introduced.

Fig. S11. By-products of catalytic ozonation of DCM at 20 °C and 120 °C on M/A-II measured by CG-MS after collection in adsorption tubes.

Table S1Binding energy and species distribution of Mn $2p_{2/3}$ for M/A-II in different reaction environments.

Catalysts	Mn 2p _{2/3}					
	Mn^{2+} (eV)	Mn^{3+} (eV)	$\mathrm{Mn}^{4+}\left(\mathrm{eV} ight)$	Mn ^{2+/} Mn (%)	Mn ³⁺ /Mn(%)	Mn ⁴⁺ /Mn(%)
Fresh M/A-II	/	642.68	644.43	/	69.84	30.16
SO ₂ M/A-II	641.00	642.69	644.71	9.87	60.03	30.09
SO ₂ +H ₂ O M/A-II	641.08	642.96	644.79	7.92	59.36	29.50

Table S2

The specific information on the by-products of the exhaust gas detected by GC-MS after adsorption tube collection.

No.	Molecular name	Molecule formula	Molecular structure
1	Chloropropylene	C ₃ H ₅ Cl	- dec
2	Trichloromethane	CHCl ₃	
3	Carbon tetrachloride	CCl_4	~
4	1,2-dichloroethane	$C_2H_4Cl_2$	~~
5	1,2-dichloropropane	$C_3H_6Cl_2$	
6	1,1,2-trichloroethane	$C_2H_3Cl_3$	} -&•
7	Tetrachlorethylene	C ₂ Cl ₄	
8	1,1,2,2-tetrachloroethane	$C_2H_2Cl_4$	

According to **Fig. S11**, that all experiments have reached the carbon balance within 10% error range. For the chlorine balance, the visible chlorine balance only reaches $60 \sim 80\%$ in the absence of water vapor. When a high concentration of water vapor was introduced, the value of Ratio of Cl_{in-out} decreased to nearly zero and the visible chlorine balance was achieved. In addition, the carbon balance deviated from normal in **Fig. S11** (a) when reacting on M/T at $20 \sim 60$ °C. One reason is that M/T has poor low temperature performance and cannot oxidize DCM to CO_x , thus generating more byproducts CH_3OH which may compete with DCM. The second reason is the higher boiling point of CH_3OH , i.e., CH_3OH (64.7 °C) > DCM (39.8 °C), which could stay on the surface of M/T and affect the carbon balance. Similarly, in **Fig. S11** (d), after the poisoning of M/A-II by the erosion of high concentration of SO₂, more CH_3OH production was detected at the same time. Therefore, it could be said that the poisoned M/A-II also had difficulty in resisting the CH_3OH production and the carbon balance deviated from the normal.