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Datasets

Details of the various data and their sources that were used in this study:

Table S1. Bulk foam data

Data 
points

Shear Rate 
(1/s)

T 
(°C) P (bar) Salinity 

(wt%)
Cs 

(wt%) Fq (%) Reference

35 10-500 80 103 0.5-8 0.25-1 80 1

56 10-500 40-
120 70-173 3 0.5 80 2

19 10-500 80 103 3 0.5 52-85 3

15 100-500 80 103 3 0.25-1 70-80 4

33 10-250 80 103 3 0.25-1 50-90 5

Table S2. Porous media data

Data 
points

Permeability 
(D)

T 
(C)

P 
(MPa)

Salinity

(wt%)
Fg (%) Cs 

(wt%)
u Darcy 
(ft/day) Reference

12 0.25 65.6 8.3-
16.6 2-15 50-80 1-5. 10 6

10 17.1 50 6.55 3-9 70-90 0.5 1.5 7

20 8.89 20 2.5 2 35-93 0.5-1 1.76-6.4 8

5 0.82 40 13 3.5 70 0.5 0.6-19 9

12 2.3 25 2.1 3 40 98 1-4 10

24 1.8 25 9 2 10-99. 0.5 8.46-
16.92 11

13 2.056 40 9 1 10-92 0.5 1.5 12

13 0.1 50 13.8 3 80-95 0.5 4.1 13

36 2.83 80 27 5.5 35-100 0.5 1.7-12.1 14



Algorithms
We provide below a brief description of the ML algorithms employed in the present study, 

along with the most important hyper-parameters of each algorithm that were optimized during 

the algorithm training. 

Decision Tree (DT) algorithm: 

The DT algorithm is one of the simplest ML algorithms used for classification and regression 

problems. During training, the DT algorithm forms a tree with root, decision and leaf nodes. 

Based on the descriptor’s values, the algorithm continuously divides input data at decision 

nodes into subsets until no individual samples remain. The nodes that don’t split into more 

nodes are called leaf or terminal nodes. In the DT algorithm, the main hyper parameters that 

need to be optimized are the number of minimum samples split and minimum samples leaf.

Minimum samples split = 2

Minimum samples leaf = 1

Random Forest (RF) algorithm: 

The RF algorithm is another tree-based ML algorithm widely adopted for classification and 

regression tasks. It operates on a specified number of DT which perform the same task, while 

their results are aggregated into the final prediction. The most important tuned parameters of 

this algorithm are the number of trees and minimum samples leaf.

Number of trees = 100

Minimum samples split = 2

Minimum samples leaf = 1

Extremely Randomized Tree (ERT) algorithm:



The ERT algorithm is a tree-based approach that has two main differences from the RF 

algorithm. The first difference is that, in ERT algorithm all trees are trained with the whole 

training dataset, while in RF different subsets are assigned to the trees. The second difference 

is that in ERT nodes are split based on random splits, while in RF based on the best split among 

a random subset of features selected at every node.

Number of trees = 100

Minimum samples split = 2

Minimum samples leaf = 1

Gradient Boost (GB) algorithm: 

The GB algorithm is another well-established tree-based algorithm that operates several DT.  

Unlike the RF algorithm, each tree in GB is built based on the results of the previous one. More 

specifically, each new tree focuses only on data unassigned by the previous trees. The 

algorithm uses loss functions, such as the mean squared error (MSE), to identify the unassigned 

data. The gradient descent method is then employed to minimize the value of the loss function. 

The samples with the higher errors between predicted and reference values will be assigned to 

the next tree for further calculations.

Number of trees = 100

Minimum samples split = 2

Minimum samples leaf = 1

Max depth = 10



Extreme Gradient Boost (XGB) algorithm: 

The XGB algorithm is a specific implementation of the GB algorithm aiming to increase the 

accuracy and speed of the latter during training. One of the main changes over GB is that XGB 

uses second order derivatives of the loss functions enabling in this way its faster and more 

accurate minimization.

Number of trees = 100

Max depth = 10

Artificial Neural Network (ANN) algorithm: 

The ANN algorithm is a computational approach that mimics the human brain. It consists of 

connected nodes called neurons through which, computational models can be built via tuning 

specific parameters. Based on its input values each neuron produces a single output which 

sends to other neurons for further calculations:

𝑛𝑒𝑢𝑟𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑖𝑛𝑝𝑢𝑡 × 𝑤𝑒𝑖𝑔ℎ𝑡 + 𝑏𝑖𝑎𝑠

An ANN consists of the following main three parts:

 The input layer (descriptors)

 One or more hidden layers (calculation neurons)

 The output layer (outputs)

Initially, weights are assigned to each neuron randomly or by empirical approaches. During 

training, the algorithm multiplies the inputs with the weights of all neurons in the hidden layers 

and compares the values in the output layer with the reference values. The model is then 

optimized by properly adjusting the weights of neurons in order to reduce differences between 

predicted and reference values. Through back propagation the weights are updated reducing 

the value of a loss function (e.g., RMSE or MAE). The forward and backward propagation 



(a.k.a. epoch) is repeated for a maximum number of times (500 in this work) or until the desired 

accuracy is achieved.  In this study, after trial and error, 5 hidden layers with 28 neurons each 

were selected as the optimum parameters. 

Optimizer = Adam

Loss function = MAE

Activation function = Relu

Epochs = 500
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