Supporting Information

The stable "F–SO₂" donor provides a mild and efficient approach to nitrile and amide

Yin Cui,^a Yiyong Zhao,^b Junjie Shen,^c Guofu Zhang^a* and Chengrong Ding^a*

^aCollege of Chemical Engineering, Zhejiang University of Technology,

Hangzhou 310014, P. R. China.

E-mail: dingcr@zjut.edu.cn; gfzhang @zjut.edu.cn;

^bZhejiang Ecological Environment Low Carbon Development Center, Hangzhou

310014, P. R. China.

^cZhejiang Kefeng New Material Co. LTD, Huzhou 313200, P. R. China.

Table of Contents

1. General information	S2
2. General procedure for the synthesis of Substrates and fluor	osulfuryl
imidazolium salt A	
3. Optimization of reaction conditions	S5-S6
4. General procedure for the synthesis of Products 2	S7-S14
5. General procedure for the synthesis of Products 4	S15-S20
6. Gram-scale synthesis of 2i and 4a	S21-S22
7. Synthesis of precursors for drugs	S23-S24
8. References	S24
9. NMR Spectra	S25-S128

Experimental Section

1. General information

All starting materials and reagents were purchased from commercial sources and used as received unless otherwise noted. Reactions were monitored using thin-layer chromatography (TLC) on commercial silica gel plates. Visualization of the developed plates was performed under UV light (254nm). Flash column chromatography was performed on silica gel. GC analysis of determination of conversion was performed on the instrument of Agilent 7890 GC. NMR spectra were recorded on Bruker AVANCE III 400MHz (¹H NMR) and 101MHz (¹³C NMR) instrument in Chloroform-*d* or DMSO-*d*₆ with TMS as internal standard.

2. General procedure for the synthesis of Substrates and fluorosulfuryl

imidazolium salt A

General procedure for the synthesis of Substrates 1

$$\begin{array}{c} \mathsf{NH}_2\mathsf{OH}\text{\bullet}\mathsf{HCI} (1.1 \text{ equiv}) \\ \underline{\mathsf{Na}_2\mathsf{CO}_3 (0.6 \text{ equiv})} \\ \mathsf{CH}_3\mathsf{OH} (80\% \text{ aq.}), \text{ reflux} \\ 1 \text{ h} \end{array} \qquad \begin{array}{c} \mathsf{R} & \mathsf{N} \\ \end{array} \\ \begin{array}{c} \mathsf{OH} \\ \mathsf{N} \\ \mathsf{I} \end{array}$$

Aldehydes (20 mmol, 1.0 equiv), hydroxylamine hydrochloride (1.53 g, 22 mmol) and Na₂CO₃ (1.27 g, 12 mmol) were dissolved in 50 mL CH₃OH (80 % aq.). The reaction mixture was heated under reflux for 0.5-1.0 h. After the reaction was complete by TLC, the reaction was cooled to room temperature, diluted with water (50 mL) and extracted with ethyl acetate (3×50 mL). And then the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated to dryness. This crude aldoximes **1** was used without further purification.

General procedure for the synthesis of Substrates 3

Ketones (20 mmol, 1.0 equiv), hydroxylamine hydrochloride (32 mmol, 1.6 equiv) and AcONa (40 mmol, 2.0 equiv) were dissolved in the mixture of EtOH/H₂O (v/v, 4:1, 50 mL). The reaction mixture was stirred at 80 °C until the consumption of the starting material was observed by TLC. After that, the reaction was cooled to room temperature, diluted with water (100 mL), extracted with ethyl acetate (150 mL \times 3), dried with anhydrous Na₂SO₄, and concentrated. The residue was purified by recrystallization or flash column chromatography on silica gel to afford the desired substrates **3**.

General procedure for the synthesis of fluorosulfuryl imidazolium salt A

$$N_{H} + F^{O} = K_{F} + K_{F$$

2-Methyl-1H-imidazole (24.7 g, 300 mmol), acetonitrile (600 mL) and sodium carbonate (79.6

g, 750 mmol) were added into a 1L round-bottom flask. Round-bottom flask equipped with magnetic stirrer and rubber stopper. Then the SO_2F_2 gas was introduced into the stirring reaction mixture by slow bubbling through a SO₂F₂ balloon, and the reaction mixture was stirred at room temperature for overnight. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was diluted with 600 mL of DCM and washed with water (3000 mL \times 3), saturated NaCl solution (600 mL) and dried over anhydrous Na₂SO₄ and the evaporation of the solvent gave crude intermediate A' with some residual acetonitrile and dichloromethane. This crude mixture was used directly in the next step. Crude intermediate A' and dichloromethane (300mL) were added into a 500mL round-bottom flask. Round-bottom flask equipped with magnetic stirrer. Then methyl trifluoromethanesulfonate (34 mL, 296 mmol) added slowly at 0 °C under N₂. The mixture allowed to warm to room temperature and stirred for 4 hours, while monitoring by TLC. After that time, the mixture was concentrated under rotary evaporation to give a white viscous crude product, to which methyl tertbutyl ether (300 mL) was added. With vigorous stirring, a solid precipitate was formed. The precipitate was washed with methyl tert-butyl ether ($300mL \times 3$) and dried in vacuo to yield the compound A as a white solid (86.1 g, overall yield 89 %).

Analytic Data of fluorosulfuryl imidazolium salt A

1-(Fluorosulfuryl)-2,3-dimethyl-1H-imidazol-3-ium trifluoromethanesulfonate (A)¹

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.44 (d, *J* = 2.0 Hz, 1H), 7.41 (d, *J* = 1.9 Hz, 1H), 3.68 (s, 3H), 2.50 (s, 3H). ¹⁹F NMR (377 MHz, DMSO-*d*₆) δ 39.97 (s, 1F), -77.96 (s, 3F).

3. Optimization of reaction conditions

	Br	OHO [⊕] OH 		N
	1d	base, solvent r.t., time	Br 2d	
Entry	A (eq.)	Base (eq.)	Solvent (mL)	Yield $(\%)^b$
1	1.0	Et ₃ N (2.0)	CH ₃ CN	70
2	1.5	Et ₃ N (2.0)	CH ₃ CN	98
3	2.0	Et ₃ N (2.0)	CH ₃ CN	97
4	1.5	DIPEA (2.0)	CH ₃ CN	87
5	1.5	DBU(2.0)	CH ₃ CN	81
6	1.5	Pyridine (2.0)	CH ₃ CN	24
7	1.5	Na ₂ CO ₃ (2.0)	CH ₃ CN	42
8	1.5	$K_2CO_3(2.0)$	CH ₃ CN	64
9	1.5	CsF (2.0)	CH ₃ CN	48
10	1.5	NaOH (2.0)	CH ₃ CN	50
11	1.5	Et ₃ N (1.0)	CH ₃ CN	21
12	1.5	Et ₃ N (1.5)	CH ₃ CN	53
13 ^c	1.5	Et ₃ N (2.0)	CH ₃ CN	98
14	1.5	Et ₃ N (2.0)	CH ₂ Cl ₂	62
15	1.5	Et ₃ N (2.0)	H ₂ O	49
16	1.5	Et ₃ N (2.0)	EtOAc	38
17	1.5	Et ₃ N (2.0)	DMF	52
18	1.5	Et ₃ N (2.0)	CH ₃ OH	37
19	1.5	Et ₃ N (2.0)	THF	35
20	1.5	Et ₃ N (2.0)	Heptane	47
21	No A	Et ₃ N (2.0)	CH ₃ CN	No reaction
22	1.5	No base	CH ₃ CN	No reaction

Table 1 Optimization of converting aldoxime to nitrile^a

^{*a*} Reaction conditions: 4-bromobenzaldehyde oxime **1d** (0.5 mmol), fluorosulfuryl imidazolium salt **A**, base, CH₃CN (2.0 mL, 0.25 M), room temperature, 10 min. ^{*b*} Isolated yield. ^{*c*} 15 min.

	N ^{OF} 3a	$\frac{TfO_{N} + N_{N} + N_{N$	→ H N O 4a			
Entry	A (eq.)	Base	Solvent	$\operatorname{Yield}^{b}(\%)$		
1	1.0	Et ₃ N (2.0)	CH ₃ CN	64		
2	1.5	Et ₃ N (2.0)	CH ₃ CN	98		
3	2.0	Et ₃ N (2.0)	CH ₃ CN	98		
4	1.5	DIPEA (2.0)	CH ₃ CN	90		
5	1.5	DBU(2.0)	CH ₃ CN	70		
6	1.5	Pyridine (2.0)	CH ₃ CN	72		
7	1.5	Na ₂ CO ₃ (2.0)	CH ₃ CN	78		
8	1.5	K ₂ CO ₃ (2.0)	CH ₃ CN	88		
9	1.5	CsCO ₃ (2.0)	CH ₃ CN	83		
10	1.5	Et ₃ N (1.0)	CH ₃ CN	80		
11	1.5	Et ₃ N (1.5)	CH ₃ CN	91		
12^{c}	1.5	Et ₃ N (2.0)	CH ₃ CN	98		
13	1.5	Et ₃ N (2.0)	DMF	80		
14	1.5	Et ₃ N (2.0)	CH_2Cl_2	81		
15	1.5	Et ₃ N (2.0)	THF	83		
16	1.5	Et ₃ N (2.0)	H ₂ O	35		
17	1.5	Et ₃ N (2.0)	EtOAc	62		
18	1.5	Et ₃ N (2.0)	CH ₃ OH	31		
19	1.5	Et ₃ N (2.0)	n-hexane	46		
20	No A	Et ₃ N (2.0)	CH ₃ CN	No reaction		
21	1.5	No base	CH ₃ CN	44		
^{<i>a</i>} Reaction con CH ₃ CN (2.0 m	^{<i>i</i>} Reaction conditions: acetophenone oxime 3a (0.5 mmol), fluorosulfuryl imidazolium salt A , base, CH ₃ CN (2.0 mL, 0.25 M), room temperature, 10 min. ^{<i>b</i>} Isolated yield. ^{<i>c</i>} 15 min.					

Table 2 Optimization of converting ketoxime to amide^a

4. General procedure for the synthesis of Products 2

General procedure for the synthesis of Products 2

Aldoxime **1** (0.5 mmol), CH₃CN (1.0 mL) and Et₃N (139 μ L, 1.0 mmol) were added into a 15 mL Schlenk flask equipped with magnetic stirrer and rubber stopper. Then the fluorosulfuryl imidazolium salt **A** (246 mg, 0.75 mmol) was dissolved in acetonitrile (1.0 mL) and that was injected slowly with a syringe into Schlenk flask, and the reaction mixture was stirred at room temperature for 10 minutes. The progress of the reaction was monitored by TLC or GC. After completion of the reaction, the reaction mixture was diluted with 10 mL of DCM and washed with 5% HCl (2×8 mL), 5% NaHCO₃ (2×8 mL), saturated NaCl solution (2×8 mL) and dried over anhydrous Na₂SO₄ and the evaporation of the solvent gave a residue that was purified on silica gel column chromatography using petroleum ether and ethyl acetate.

Analytic Data of Products 2

4-Methylbenzonitrile (2a)²

White solid (43.9 mg, 75%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.72, 132.05 , 129.85 , 119.17 , 109.32 , 21.84 .

Benzonitrile (2b)²

Colorless oil (40.2 mg, 78%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 – 7.52 (m, 3H), 7.43 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 132.83 , 132.09 , 129.16 , 118.84 , 112.33.

4-Methoxybenzonitrile (2c)²

White solid (63.9 mg, 96%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 – 7.38 (m, 2H), 6.88 – 6.77 (m, 2H), 3.76 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.83, 133.85, 119.20, 114.76, 103.65, 55.51.

4-Bromobenzonitrile (2d)³

White solid (89.2 mg, 98%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 – 7.54 (m, 2H), 7.52 – 7.45 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 133.46, 132.62, 127.97, 118.07, 111.19.

4-Chlorobenzonitrile (2e)²

White solid (68.0 mg, 99%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 8.6 Hz, 2H), 7.43 (d, *J* = 8.7 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 139.47, 133.41, 129.68, 117.96, 110.77.

1,3-bis(4-bromophenyl)urea (2f)³

White solid (45.4 mg, 75%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 (ddd, J = 9.5, 5.0, 2.4 Hz, 2H), 7.18 – 7.01 (m, 2H).¹³C NMR (101 MHz, Chloroform-*d*) δ 164.92 (d, J = 255.9 Hz), 134.69 (d, J = 9.4 Hz), 117.98 , 116.76 (d, J = 22.6 Hz), 108.47 (d, J = 3.6 Hz).

4-Fluorobenzonitrile (2g)⁴

Colorless oil (63.4 mg, 84%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 – 7.71 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 134.70, 134.37, 132.71, 126.21, 126.18, 126.14, 124.42, 121.71, 117.46, 116.05.

Methyl 4-cyanobenzoate (2h)²

Colorless oil (79.7 mg, 99%).¹H NMR (400 MHz, Chloroform-*d*) δ 8.07 – 7.96 (m, 2H), 7.71 – 7.57 (m, 2H), 3.86 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.27, 133.81, 132.18, 129.99, 117.88, 116.23, 52.63.

[1,1'-biphenyl]-4-Carbonitrile (2i)³

White solid (88.7 mg, 99%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 (q, *J* = 8.5, 7.7 Hz, 4H), 7.56 (d, *J* = 7.2 Hz, 2H), 7.51 – 7.37 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.41 , 138.98 , 132.61 , 129.23 , 128.81 , 127.66 , 127.24 , 119.06 , 110.85 .

4-(methylsulfonyl)Benzonitrile (2j)³

White solid (88.8 mg, 98%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 – 8.01 (m, 2H), 7.98 – 7.83 (m, 2H), 3.10 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.44 , 133.27 , 128.22 , 117.51 , 117.16 , 44.19 .

4-Nitrobenzonitrile (2k)²

Yellow solid (73.3 mg, 99%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.36 (dt, J = 9.0, 2.0 Hz, 2H), 7.91 (dt, J = 9.0, 2.0 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.03 , 133.58 , 124.31 , 118.28 , 116.90 .

3-Nitrobenzonitrile (2l)³

White solid (72.5 mg, 98%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.59 – 8.53 (m, 1H), 8.50 (ddd, J = 8.4, 2.1, 1.0 Hz, 1H), 8.03 (d, J = 7.7 Hz, 1H), 7.77 (t, J = 8.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.23 , 137.68 , 130.74 , 127.57 , 127.24 , 116.58 , 114.11 .

3-Bromobenzonitrile (2m)³

White solid (85.5 mg, 94%). ¹H N MR (400 MHz, Chloroform-*d*) δ 7.80 – 7.69 (m, 2H), 7.60 (d, J = 7.8 Hz, 1H), 7.36 (t, J = 7.9 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 136.14 , 134.72 , 130.75 , 130.70 , 122.89 , 117.30 , 114.18 .

3-Methylbenzonitrile (2n)⁵

White solid (55.6 mg, 95%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.26 (m, 4H), 2.33 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 139.24 , 133.67 , 132.36 , 129.17 , 129.02 , 118.96 , 112.13 , 21.04 .

2-Nitrobenzonitrile (20)⁶

White solid (73.3 mg, 99%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 (d, *J* = 7.9 Hz, 1H), 7.47 – 7.39 (m, 1H), 7.30 – 7.19 (m, 2H), 2.49 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.80, 132.67, 132.40, 130.23, 126.24, 118.07, 112.66, 20.35.

2-Bromobenzonitrile (2p)³

White solid (87.3 mg, 96%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 – 7.65 (m, 2H), 7.53 – 7.41 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 134.35, 133.95, 133.23, 127.69, 125.32, 117.16, 115.86.

2-Methylbenzonitrile (2q)⁵

Colorless oil (56.8 mg, 97%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 (d, *J* = 7.9 Hz, 1H), 7.47 – 7.39 (m, 1H), 7.30 – 7.19 (m, 2H), 2.49 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.80, 132.67, 132.40, 130.23, 126.24, 118.07, 112.66, 20.35.

3,4-Dimethoxybenzonitrile (2r)⁵

White solid (79.1 mg, 97%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 (d, J = 8.3 Hz, 1H), 7.04 (s, 1H), 6.88 (d, J = 8.4 Hz, 1H), 3.90 (s, 3H), 3.86 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.86, 149.15, 126.46, 119.24, 113.88, 111.27, 103.76, 56.12.

5-Chloro-2-methoxybenzonitrile (2s)⁷

White solid (84.4 mg, 96%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 (dd, J = 7.4, 2.5 Hz, 2H), 7.01 – 6.86 (m, 1H), 3.94 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.93 , 134.40 , 132.97 , 125.64 , 115.14 , 112.73 , 103.10 , 56.44 .

2,4-Dichlorobenzonitrile (2t)⁶

White solid (81.7 mg, 95%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 (d, J = 8.4 Hz, 1H), 7.56 (d, J = 1.9 Hz, 1H), 7.39 (dd, J = 8.4, 2.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 140.11, 137.82, 134.62, 130.28, 127.89, 115.24, 111.90.

2-Naphthonitrile (2u)²

White solid (75.8 mg, 99%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (s, 1H), 7.85 (t, *J* = 9.1 Hz, 3H), 7.67 – 7.51 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 134.60 , 134.11 , 132.18 , 129.20 , 129.09 , 128.40 , 128.06 , 127.69 , 126.27 , 119.31 , 109.27 .

Picolinonitrile (2v)³

Yellow oil (50.5 mg, 97%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.64 (d, *J* = 4.8 Hz, 1H), 7.83 (td, *J* = 7.8, 1.7 Hz, 1H), 7.69 – 7.63 (m, 1H), 7.51 (ddd, *J* = 7.8, 4.8, 1.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.10, 137.26, 133.70, 128.62, 127.16, 117.27.

Thiophene-2-carbonitrile (2w)³

Colorless oil (45.3 mg, 83%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 – 7.51 (m, 2H), 7.13 (dd, J = 4.9, 3.9 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.51 , 132.76 , 127.75 , 114.30 , 109.78 .

Furan-2-carbonitrile (2x)⁶

Colorless oil (36.8 mg, 79%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 (d, J = 1.8 Hz, 1H), 7.08 (d, J = 3.7 Hz, 1H), 6.51 (dd, J = 3.7, 1.9 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.58, 126.04, 122.18, 111.57, 111.47.

Cinnamonitrile (2aa)²

Colorless oil (60.7 mg, 94%) ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 (q, *J* = 5.3, 4.8 Hz, 5H), 7.34 (d, *J* = 16.6 Hz, 1H), 5.85 (d, *J* = 16.7 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.54 , 133.55 , 131.27 , 129.16 , 127.47 , 118.33 , 96.36 .

3-Phenylpropiolonitrile (2ab)³

White solid (54.6 mg, 86%) ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 – 7.57 (m, 2H), 7.53 (t, J = 7.6 Hz, 1H), 7.41 (t, J = 7.7 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 133.49, 131.94, 128.90, 117.45, 105.48, 83.06, 63.03.

2-Phenylacetonitrile (2ac)²

Colorless oil (51.5 mg, 88%) ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 – 7.30 (m, 5H), 3.73 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 130.12 , 129.17 , 128.06 , 128.00 , 118.10 , 23.55 .

3-Phenylpropanenitrile (2ad)⁶

Colorless oil (59.0 mg, 90%) ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.24 (m, 5H), 2.95 (t, *J* = 7.4 Hz, 2H), 2.60 (t, *J* = 7.4 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.28 , 128.91 , 128.40 , 127.25 , 119.38 , 31.51 , 19.28.

Dodecanenitrile (2ae)⁸

White solid (82.5 mg, 91%) ¹H NMR (400 MHz, Chloroform-*d*) δ 2.30 (t, *J* = 7.1 Hz, 2H), 1.62 (p, *J* = 7.2 Hz, 2H), 1.49 – 1.35 (m, 2H), 1.35 – 1.11 (m, 14H), 0.85 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 119.73, 31.86, 29.52, 29.48, 29.28, 28.74, 28.62, 25.36, 22.63, 17.02, 14.03.

5. General procedure for the synthesis of Products 4

General procedure for the synthesis of Products 4

Aldoxime **1** (0.5 mmol), CH₃CN (1.0 mL) and Et₃N (139 μ L, 1.0 mmol) were added into a 15 mL Schlenk flask equipped with magnetic stirrer and rubber stopper. Then the fluorosulfuryl imidazolium salt **A** (246 mg, 0.75 mmol) was dissolved in acetonitrile (1.0 mL) and that was injected slowly with a syringe into Schlenk flask, and the reaction mixture was stirred at room temperature for 10 minutes. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was diluted with 10 mL of DCM and washed with 5% HCl (2×8 mL), 5% NaHCO₃ (2×8 mL), saturated NaCl solution (2×8 mL) and dried over anhydrous Na₂SO₄ and the evaporation of the solvent gave a residue that was purified on silica gel column chromatography using petroleum ether and ethyl acetate.

Analytic Data of Products 4

N-phenylacetamide (4a)⁹

White solid (66.2 mg, 98%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.49 (s, 1H), 7.53 (d, J = 7.7 Hz, 2H), 7.30 (t, J = 7.9 Hz, 2H), 7.11 (t, J = 7.4 Hz, 1H), 2.17 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.63 , 137.88 , 128.91 , 124.54 , 120.45 , 24.15 .

N-(4-isopropylphenyl)acetamide (4b)¹⁰

White solid (85.9, 97%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (s, 1H), 7.43 (d, *J* = 8.5 Hz, 2H), 7.17 (d, *J* = 8.4 Hz, 2H), 2.89 (p, *J* = 6.9 Hz, 1H), 2.16 (s, 3H), 1.24 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.83 , 145.02 , 135.67 , 126.82 , 120.36 , 33.60 ,

24.38, 24.04.

N-(4-bromophenyl)acetamide (4c)¹¹

White solid (103.8 mg, 97%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (s, 1H), 7.43 (s, 4H), 2.19 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.48, 136.97, 131.96, 121.42, 116.88, 24.61.

N-(4-chlorophenyl)acetamide (4d)¹²

White solid (81.4 mg, 96%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.08 (s, 1H), 7.64 – 7.56 (m, 2H), 7.38 – 7.29 (m, 2H), 2.05 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.91, 138.74, 129.03, 126.94, 120.91, 24.45.

N-(4-fluorophenyl)acetamide (4e)¹³

White solid (91.8 mg, 97%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (s, 1H), 7.47 (dd, J = 8.7, 4.8 Hz, 2H), 7.01 (t, J = 8.5 Hz, 2H), 2.17 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.61, 159.39 (d, J = 243.5 Hz), 135.10 – 132.25 (m), 121.91 (d, J = 7.9 Hz), 115.61 (d, J = 22.4 Hz), 24.43.

N-([1,1'-biphenyl]-4-yl)acetamide (4f)¹⁴

White solid (97.2 mg, 92%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.05 (s, 1H), 7.68 (d, *J* = 8.6 Hz, 2H), 7.61 (t, *J* = 8.5 Hz, 4H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.31 (t, *J* = 7.3 Hz, 1H), 2.07 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.82, 140.20, 139.28, 135.10, 129.35, 127.42, 127.34, 126.67, 119.77, 24.51.

N-(4-phenoxyphenyl)acetamide (4g)¹⁰

White solid (106.8 mg, 94%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (d, *J* = 9.8 Hz, 1H), 7.48 (d, *J* = 8.9 Hz, 2H), 7.33 (t, *J* = 7.9 Hz, 2H), 7.10 (t, *J* = 7.4 Hz, 1H), 6.99 (dd, *J* = 8.2, 4.8 Hz, 4H), 2.18 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.70, 157.49, 153.51, 133.43, 129.76, 123.13, 121.88, 119.55, 118.46, 24.38.

Methyl 4-acetamidobenzoate (4h)¹⁵

White solid (91.7 mg, 95%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.39 (s, 1H), 7.98 (d, J = 8.1 Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 3.90 (s, 3H), 2.21 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.21, 166.84, 142.44, 130.77, 125.38, 118.95, 52.11, 24.67.

N-(4-cyanophenyl)acetamide (4i)¹⁶

White solid (64.8 mg, 81%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.39 (s, 1H), 7.76 (s, 4H), 2.09 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.66 , 143.94 , 133.71 , 119.57 , 119.37 , 105.14 , 24.67.

N-(3-nitrophenyl)acetamide (4j)¹³

Yellow solid (85.6 mg, 95%). ¹H NMR (400 MHz, DMSO- d_6) δ 10.44 (s, 1H), 8.62 (t, J = 2.0 Hz, 1H), 7.88 (dt, J = 8.1, 2.5 Hz, 2H), 7.59 (t, J = 8.2 Hz, 1H), 2.10 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 169.55 , 148.40 , 140.85 , 130.59 , 125.32 , 117.99 , 113.42 , 24.52 .

N-(3-methoxyphenyl)acetamide (4k)¹³

White solid (80.1 mg, 97%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (s, 1H), 7.19 (t, J = 8.1 Hz, 1H), 7.02 (d, J = 7.9 Hz, 1H), 6.71 – 6.59 (m, 1H), 3.77 (s, 3H), 2.16 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.00, 160.06, 139.26, 129.64, 112.25, 109.98, 105.89, 55.28, 24.56.

N-(2-methoxyphenyl)acetamide (4l)¹⁵

White solid (79.3 mg, 96%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.36 (d, J = 9.4 Hz, 1H), 7.82 (s, 1H), 7.04 (td, J = 7.8, 1.6 Hz, 1H), 6.96 (td, J = 7.7, 1.3 Hz, 1H), 6.87 (dd, J = 8.1, 1.1 Hz, 1H), 3.87 (s, 3H), 2.20 (s, 3H). ¹³C NMR (101 MHz,) δ 168.27, 147.71, 127.69, 123.64, 121.04, 119.80, 109.89, 55.64, 24.93.

N-(2-chlorophenyl)acetamide (4m)¹³

White solid (81.5 mg, 95%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.37 (d, J = 8.1 Hz, 1H), 7.67 (s, 1H), 7.43 – 7.34 (m, 1H), 7.32 – 7.24 (m, 1H), 7.05 (t, J = 7.3 Hz, 1H), 2.26 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.32 , 134.60 , 128.99 , 127.75 , 124.65 , 122.57 , 121.68 , 24.90 .

N-(3,4-dimethoxyphenyl)acetamide (4n)¹³

White solid (94.6 mg, 97%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.82 (s, 1H), 7.29 (d, *J* = 2.3 Hz, 1H), 7.09 (dd, *J* = 8.7, 2.4 Hz, 1H), 6.86 (d, *J* = 8.7 Hz, 1H), 3.71 (s, 3H), 3.70 (s, 3H), 2.01 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.37, 148.92, 145.09, 133.44, 112.43, 111.40, 104.73, 56.11, 55.75, 24.30.

N-(naphthalen-1-yl)acetamide (40)¹⁰

White solid (86.1 mg, 93%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.96 (s, 1H), 8.13 – 8.05 (m, 1H), 7.94 (dd, *J* = 6.2, 3.2 Hz, 1H), 7.76 (d, *J* = 8.2 Hz, 1H), 7.71 (d, *J* = 7.3 Hz, 1H), 7.55 (td, *J* = 6.9, 6.0, 3.6 Hz, 2H), 7.52 – 7.45 (m, 1H), 2.20 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.42, 134.17, 128.58, 128.14, 126.44, 126.21, 126.04, 125.51, 123.22, 122.01, 23.97.

N-(naphthalen-2-yl)acetamide (4p)¹²

White solid (88.0 mg, 95%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (s, 1H), 7.95 (s, 1H), 7.77 (dt, J = 8.5, 4.3 Hz, 3H), 7.51 – 7.38 (m, 3H), 2.23 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.99, 135.44, 133.81, 130.65, 128.73, 127.67, 127.56, 126.49, 125.04, 120.05, 116.84, 24.66.

$$\mathbf{X}_{\mathbf{S}}^{\mathsf{H}}$$

N-(thiophen-2-yl)acetamide (4q)¹⁷

White solid (56.5 mg, 80%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.14 (s, 1H), 6.94 – 6.86 (m, 1H), 6.83 (dd, *J* = 5.5, 3.7 Hz, 1H), 6.63 (dd, *J* = 3.7, 1.4 Hz, 1H), 2.06 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 166.67, 140.36, 124.32, 117.03, 110.69, 22.98.

N-phenethylacetamide (4r)¹⁵

White solid (71.8 mg, 88 %). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 (t, *J* = 7.3 Hz, 2H), 7.24 (dd, *J* = 19.8, 7.2 Hz, 3H), 5.66 (s, 1H), 3.53 (q, *J* = 6.4 Hz, 2H), 2.84 (t, *J* = 6.9 Hz, 2H), 1.96 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.22, 138.88, 128.77, 128.68, 126.55, 40.72, 35.63, 23.37.

1,3,4,5-tetrahydro-2H-1-benzazepin-2-one (4s)¹⁵

White solid (62.8 mg, 78%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (s, 1H), 7.25 (d, J = 8.3 Hz, 2H), 7.20 – 7.12 (m, 1H), 7.01 (d, J = 7.7 Hz, 1H), 2.83 (t, J = 7.2 Hz, 2H), 2.39 (t, J = 7.2 Hz, 2H), 2.27 (q, J = 7.0 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.24 , 137.76 , 134.39 , 129.91 , 127.50 , 125.79 , 121.84 , 32.74 , 30.33 , 28.49 .

ε-caprolactam (4t)¹²

White solid (40.7 mg, 72%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.17 (s, 1H), 3.25 – 3.04 (m, 2H), 2.40 (d, J = 5.4 Hz, 2H), 1.73 – 1.54 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.53, 42.72, 36.73, 30.58, 29.67, 23.19.

6. Gram-scale production of 2i and 4a by crystallization

Procedure for the synthesis of 2i

4-phenylbenzaldehyde **B** (1.82 g, 10 mmol), EtOH (100 mL, 0.1 M) and 50 wt% aqueous hydroxylamine solution (0.77 g, 15 mmol) were added into a 250 mL round-bottom flask equipped with magnetic stirrer, then the mixture was heated at reflux for an hour. After 4-phenylbenzaldehyde **B** was completely consumed (monitored by TLC) and the reaction mixture was concentrated under reduced pressure to give the crude 4-phenylbenzaldoxime **1i**. The crude 4-phenylbenzaldoxime **1i** (without any purification), CH₃CN (50 mL) and Et₃N (2.8 mL, 20 mmol) were added into a 250 mL round-bottom flaske quipped with magnetic stirrer and rubber stopper. Then the fluorosulfuryl imidazolium salt **A** (4.92 g, 15 mmol) was dissolved in acetonitrile (50 mL) and that was injected slowly with a syringe into flask, and the reaction mixture was stirred at room temperature for 30 minutes. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was concentrated under reduced pressure to remove acetonitrile and diluted with 100 mL of DCM and washed with 5% HCl (100 mL), saturated NaCl solution (100 mL) and dried over anhydrous Na₂SO₄ and the evaporation of the appropriate amount solvent. While white soild was crystallized and washed with petroleum ether to give 4-phenylbenzonitrile **2i** (1.70 g, 95 %).

Procedure for the synthesis of 4a

Acetophenone C (1.20 g, 10 mmol), EtOH (100 mL, 0.1 M) and 50 wt% aqueous hydroxylamine solution (0.77 g, 15 mmol) were added into a 250 mL round-bottom flask equipped with magnetic stirrer, then the mixture was heated at reflux for an hour. After Acetophenone C was completely consumed (monitored by TLC) and the reaction mixture was

concentrated under reduced pressure to give the crude acetophenone oxime **3a**. The crude acetophenone oxime **3a** (without any purification), CH₃CN (50 mL) and Et₃N (2.8 mL, 20 mmol) were added into a 250 mL round-bottom flaske quipped with magnetic stirrer and rubber stopper. Then the fluorosulfuryl imidazolium salt **A** (4.92 g, 15 mmol) was dissolved in acetonitrile (50 mL) and that was injected slowly with a syringe into flask, and the reaction mixture was stirred at room temperature for 30 minutes. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was concentrated under reduced pressure to remove appropriate amount acetonitrile. While white soild was crystallized and washed with petroleum ether to give acetanilide **4a** (1.70 g, 94 %).

7. Synthesis of precursors for drugs

$$R \frown O \xrightarrow{50 wt\% \text{ NH}_2\text{OH} (1.5 \text{ eq})}_{\text{EtOH, reflux, 1 hour}} R \frown N \xrightarrow{OH} \xrightarrow{A 1.5 \text{ eq.}}_{\text{Et}_3\text{N} (2.0 \text{ eq.}), \text{CH}_3\text{CN}} R \xrightarrow{N}_{\text{r.t., 30 min}} R \xrightarrow{N}_{\text{E or } G}$$

Aldehyde **D** or **F** (0.5 mmol), EtOH (5 mL, 0.1 M) and 50 wt% aqueous hydroxylamine solution (24.7 μ L, 0.75 mmol) were added into a 10 mL round-bottom flask equipped with magnetic stirrer, then the mixture was heated at reflux for an hour. After aldehyde was completely consumed (monitored by TLC) and the reaction mixture was concentrated under reduced pressure to give the crude aldoxime. The crude aldoxime (without any purification), CH₃CN (3 mL) and Et₃N (139 μ L, 1 mmol) were added into a 10 mL round-bottom flask equipped with magnetic stirrer and rubber stopper. Then the fluorosulfuryl imidazolium salt **A** (246 mg, 0.75 mmol) was dissolved in acetonitrile (2 mL) and that was injected slowly with a syringe into flask, and the reaction mixture was stirred at room temperature for 30 minutes. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was diluted with 20 mL of DCM and washed with 5% HCl (2×20 mL), 5% NaHCO₃ (2×20 mL), saturated NaCl solution (2×20 mL) and dried over anhydrous Na₂SO₄ and the evaporation of the solvent gave a residue that was purified on silica gel column chromatography using petroleum ether and ethyl acetate.

3,4-Bis(2-methoxyethoxy)benzaldehyde (E)³

yellow oil (119.3 mg, 95%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 7.25 (m, 1H), 7.16 (d, *J* = 1.7 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 4.19 (dt, *J* = 15.5, 4.7 Hz, 4H), 3.80 (q, *J* = 5.5 Hz, 4H), 3.46 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.95 , 148.92 , 126.85 , 119.18 , 117.08 , 113.53 , 104.20 , 70.82 , 70.71 , 69.08 , 68.64 , 59.32 , 59.28 .

4'-methyl-2-biphenylcarbonitrile (G)¹⁸

White solid (93.7 mg, 97%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 – 7.74 (m, 1H), 7.66 (td, J = 7.7, 1.4 Hz, 1H), 7.52 (ddd, J = 14.5, 7.2, 1.2 Hz, 3H), 7.44 (td, J = 7.6, 1.2 Hz, 1H), 7.33 (d, J = 7.9 Hz, 2H), 2.45 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.56 , 138.73 , 135.30 , 133.75 , 132.81 , 130.01 , 129.48 , 128.65 , 127.32 , 118.93 , 111.21 , 21.29 .

8. References

- [1] P. Wang, H. Zhang, X. Nie, T. Xu and S. Liao, Nat. Commun., 2022, 13, 3370.
- [2] S. R. Mudshinge, C. S. Potnis, B. Xu and G. B. Hammond, Green Chem., 2020, 22, 4161.
- [3] W.-Y. Fang and H.-L. Qin, J. Org. Chem., 2019, 84, 5803.
- [4] K. Hyodo, K. Togashi, N. Oishi, G. Hasegawa and K. Uchida, Org. Lett., 2017, 19, 3005.
- [5] Z. Shu, Y. Ye, Y. Deng, Y. Zhang and J. Wang, Angew. Chem., Int. Ed., 2013, 52, 10573.
- [6] Y. Zhao, G. Mei, H. Wang, G. Zhang and C. Ding, Synlett, 2019, 30, 1484.
- [7] L. Zhang and X. Hu, Chem. Sci., 2017, 8, 7009.
- [8] R. Y. Liu, M. Bae and S. L. Buchwald, J. Am. Chem. Soc., 2018, 140, 1627.
- [9] N. Tandon, S. M. Patil, R. Tandon and P. Kumar, RSC Adv., 2021, 11, 21291.
- [10] L. Tang, Z. L. Wang, H. L. Wan, Y. H. He and Z. Guan, Org. Lett., 2020, 22, 6182.
- [11] D. Dev, T. Kalita, T. Mondal and B. Mandal, Adv. Synth. Catal., 2021, 363, 1427.
- [12] Y. Gao, J. Liu, Z. Li, T. Guo, S. Xu, H. Zhu, F. Wei, S. Chen, H. Gebru and K. Guo, J. Org. Chem., 2018, 83, 2040.
- [13] G. Zhang, Y. Zhao, L. Xuan and C. Ding, Eur. J. Org. Chem., 2019, 2019, 4911.
- [14] R. J. Tang, T. Milcent and B. Crousse, J. Org. Chem., 2018, 83, 930.
- [15] J. Gurjar and V. V. Fokin, Chem. Eur. J., 2020, 26, 10402.
- [16] Z. Zand, F. Kazemi and A. Partovi, J. Photoch. Boi. B, 2015, 152, 58.
- [17] S.-K. Xiang, D.-X. Zhang, H. Hu, J.-L. Shi, L.-G. Liao, C. Feng, B.-Q. Wang, K.-Q. Zhao, P. Hu, H. Yang and W.-H. Yu, *Adv. Synth. Catal.*, 2013, **355**, 1495.
- [18] K. L. Wilson, J. Murray, C. Jamieson and A. J. Watson, Synlett, 2018, 29, 650.

¹H NMR Spectra of A

¹⁹F NMR Spectra of A

¹H NMR Spectra of 2a

¹³C NMR Spectra of 2a

¹H NMR Spectra of 2c

¹³C NMR Spectra of 2c

¹H NMR Spectra of 2d

¹H NMR Spectra of 2e

¹³C NMR Spectra of 2e

¹H NMR Spectra of 2f

¹H NMR Spectra of 2g

¹H NMR Spectra of 2h

¹³C NMR Spectra of 2h

¹³C NMR Spectra of 2i

¹H NMR Spectra of 2j

¹³C NMR Spectra of 2j

¹H NMR Spectra of 2k

¹³C NMR Spectra of 2k

¹³C NMR Spectra of 21

¹H NMR Spectra of 2m

¹³C NMR Spectra of 2m

¹H NMR Spectra of 2n

¹³C NMR Spectra of 2n

¹H NMR Spectra of 20

¹³C NMR Spectra of 20

¹H NMR Spectra of 2p

¹³C NMR Spectra of 2p

¹H NMR Spectra of 2q

¹³C NMR Spectra of 2q

¹H NMR Spectra of 2r

¹³C NMR Spectra of 2r

¹H NMR Spectra of 2s

¹³C NMR Spectra of 2s

¹³C NMR Spectra of 2t

¹H NMR Spectra of 2u

¹H NMR Spectra of 2v

¹³C NMR Spectra of 2v

¹H NMR Spectra of 2w

¹³C NMR Spectra of 2w

¹³C NMR Spectra of 2x

¹H NMR Spectra of 2aa

¹³C NMR Spectra of 2aa

¹³C NMR Spectra of 2ab

¹H NMR Spectra of 2ac

¹³C NMR Spectra of 2ac

¹H NMR Spectra of 2ad

¹³C NMR Spectra of 2ad

¹H NMR Spectra of 2ae

¹³C NMR Spectra of 2ae

¹H NMR Spectra of 4a

¹³C NMR Spectra of 4a

¹H NMR Spectra of 4b

¹³C NMR Spectra of 4b

¹H NMR Spectra of 4c

¹³C NMR Spectra of 4c

¹H NMR Spectra of 4e

¹³C NMR Spectra of 4e

¹H NMR Spectra of 4f

¹H NMR Spectra of 4h

¹³C NMR Spectra of 4h

¹³C NMR Spectra of 4i

¹³C NMR Spectra of 4j

¹³C NMR Spectra of 4k

¹H NMR Spectra of 4l

¹³C NMR Spectra of 41

¹³C NMR Spectra of 4m

¹H NMR Spectra of 4n

¹³C NMR Spectra of 4n

¹H NMR Spectra of 40

¹³C NMR Spectra of 40

¹H NMR Spectra of 4p

¹³C NMR Spectra of 4q

¹H NMR Spectra of 4r

¹³C NMR Spectra of 4r

¹H NMR Spectra of 4s

¹³C NMR Spectra of 4s

¹H NMR Spectra of 4t

¹³C NMR Spectra of 4t

¹H NMR Spectra of E

¹³C NMR Spectra of E

¹H NMR Spectra of G

¹³C NMR Spectra of G

