Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Copper-Catalyzed Cross Coupling Reaction of Sulfonyl Hydrazides with 3-Aminoindazoles

Guipeng Feng,*a Jie Meng,^b Shaohong Xu,^a Yao Gao,^a Yingying Zhu^a and Ziyu Huang^a

^a School of Pharmacy, Xinxiang University, Xinxiang 453000, P.R. of China.

^b School of Basic Medical Sciences, Shandong University Cheeloo College of Medicine, Jinan, 250012, P.R. of China.

Email: fengguipengheda@163.com

Supporting Information

List of Contents

1. General information	S2
2. General procedures for reactions	
3. Preliminary mechanism study	
4. X-ray crystal structure of 3a	
5. Compound characterizations	
6. Spectroscopic data for products	S16

1. General information

All manipulations were carried out under air atmosphere. Column chromatography was generally performed on silica gel (300-400 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions. The ¹H NMR (400 MHz), ¹³C NMR (100 MHz) and ¹⁹F NMR (376 MHz) data were recorded with CDCl₃ or DMSOd6 as solvent at room temperature unless specified otherwise. The chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. ¹H NMR spectra was recorded with in deuterated solvents and calibrated to the residual solvent peak or tetramethylsilane ($\delta = 0$ ppm).; HRMS were performed on Agilent ESI-quadrupole.

2. General procedures for reactions

2.1 General procedures of synthesis of 3 or 4

To an oven-dried 10 mL Schlenk tube equipped with a stir bar, were added substituted 1*H*indazol-3-amine **1** (0.3 mmol, 1.5 equiv), sulfonyl hydrazides **2** (0.2 mmol), CuI (0.04 mmol, 20 mol%), K₂CO₃ (0.4 mmol, 2.0 equiv). Then DMSO (2.0 mL) and cumene hydroperoxide (0.8 mmol, 4.0 equiv) were added in sequence. The solution was then stirred at 40 °C for 18 h. After completion of the reaction, 5 mL of water was added and extracted by ethyl acetate (3×5 mL). The combined organic layer was washed with brine (5 mL) and then dried over anhydrous Na₂SO₄ and evaporated in vacuum. The desired products were obtained in the corresponding yields after purification by column chromatography on silica gel eluting with petroleum ether / ethyl acetate.

2.2 General procedures of synthesis of gram scale of 3a

To an oven-dried 20 mL Schlenk tube equipped with a stir bar, were added substituted 1*H*-indazol-3-amine **1a** (7.5 mmol, 0.997g), 4-methylbenzenesulfonohydrazide **2a** (5.0 mmol, 0.93g), CuI (1.0 mmol, 190 mg), K₂CO₃ (10.0 mmol, 1.38 g). Then DMSO (20 mL) and cumene hydroperoxide (20 mmol, 3.04 g) were added in sequence. The solution was then stirred at 40 °C for 18 h. After completion of the reaction, 30 mL of water was added and extracted by ethyl acetate (3×10 mL). The combined organic layer was washed with brine (5 mL) and then dried over anhydrous Na₂SO₄ and evaporated in vacuum. The desired **3a** was obtained in 64% yield (0.92 g) after purification by column chromatography on silica gel eluting with petroleum ether / ethyl acetate (2:1).

3. Preliminary mechanism study

3.1 General procedures of synthesis of 3a in the presence of TEMPO

To an oven-dried 10 mL Schlenk tube equipped with a stir bar, were added 1*H*-indazol-3amine **1a** (0.3 mmol, 40 mg), 4-methylbenzenesulfonhydrazide **2a** (0.2 mmol, 37.2 mg), CuI (20 mol%, 7.6 mg), K_2CO_3 (0.4 mmol, 55.2 mg) and TEMPO (0.4 mmol, 62.5 mg). Then DMSO (2.0 mL) and cumene hydroperoxide (0.8 mmol, 118 uL) were added in sequence. The solution was then stirred at 40 °C for 18 h. After completion of the reaction, apart from the target product and the starting material, no other separable substances were found by TLC detection. The desired product **3a** were obtained in 32% yield (18.4 mg) after purification by column chromatography.

3.2 General procedures of synthesis of 3a in the presence of BHT

To an oven-dried 10 mL Schlenk tube equipped with a stir bar, were added 1*H*-indazol-3amine **1a** (0.3 mmol, 40 mg), 4-methylbenzenesulfonhydrazide **2a** (0.2 mmol, 37.2 mg), CuI (20 mol%, 7.6 mg), K_2CO_3 (0.4 mmol, 55.2 mg) and BHT (0.4 mmol, 88 mg). Then DMSO (2.0 mL) and cumene hydroperoxide (0.8 mmol, 118 uL) were added in sequence. The solution was then stirred at 40 °C for 18 h. After completion of the reaction, we observed unreacted starting materials, target product, and new compounds that could not be separated (trace amounts). Then the reaction solution was analyzed by LC-MS, compounds **5** and **6** were detected by LC-MS. And product **3a** were also obtained in 36% yield (20.6 mg) after purification by column chromatography.

4. X-ray crystal structure of 3a

Table S1. Crystal data and structure refinement for 3a.

Empirical formula	C ₁₄ H ₁₃ N ₃ O ₂ S
Formula weight	287.33
Temperature	296(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P 21/n
	a = 8.3551(8) Å
	α=90°
	b = 11.7955(11) Å
Unit cell dimensions	β= 104.633(2)°
	c = 14.7480(13) Å
	$\gamma = 90^{\circ}$
Volume	1406.3(2) Å ³
Ζ	4
Density (calculated)	1.357 g/cm ³
Absorption coefficient	0.235 mm ⁻¹
F(000)	600
Crystal size	0.260 x 0.250 x 0.240 mm ³
Theta range for data collection	3.055 to 24.996°.
Index ranges	-9<=h<=9, -13<=k<=14, -17<=l<=8
Reflections collected	7002
Independent reflections	2466 [R(int) = 0.0203]
Completeness to theta = 24.996°	99.8 %
Data / restraints / parameters	2466 / 0 / 190
Goodness-of-fit on F ²	0.989
Final R indices [I>2sigma(I)]	R1 = 0.0405, WR2 = 0.1073

R indices (all data)	R1 = 0.0498, $wR2 = 0.1137$
Largest diff. peak and hole	0.250 and -0.488 e.Å ⁻³

	0 1				
S(1)-O(1)	1.4230(16)	С(7)-Н(7)	0.9300	C(10)-C(9)-C(8)	116.9(2)
S(1)-O(2)	1.4237(17)	C(1)-H(1C)	0.9600	С(10)-С(9)-Н(9)	121.5
S(1)-N(3)	1.6605(16)	C(1)-H(1D)	0.9600	С(8)-С(9)-Н(9)	121.5
S(1)-C(5)	1.7464(18)	C(1)-H(1E)	0.9600	C(3)-C(4)-C(5)	119.23(19)
N(3)-C(8)	1.404(2)	O(1)-S(1)-O(2)	120.27(11)	C(3)-C(4)-H(4)	120.4
N(3)-N(2)	1.419(2)	O(1)-S(1)-N(3)	106.37(9)	C(5)-C(4)-H(4)	120.4
N(2)-C(14)	1.310(2)	O(2)-S(1)-N(3)	104.39(9)	C(7)-C(2)-C(3)	118.16(19)
C(13)-C(12)	1.388(3)	O(1)-S(1)-C(5)	109.95(9)	C(7)-C(2)-C(1)	121.0(2)
C(13)-C(8)	1.390(3)	O(2)-S(1)-C(5)	108.47(10)	C(3)-C(2)-C(1)	120.8(2)
C(13)-C(14)	1.451(3)	N(3)-S(1)-C(5)	106.45(8)	C(9)-C(10)-C(11)	121.8(2)
N(1)-C(14)	1.357(3)	C(8)-N(3)-N(2)	110.09(15)	С(9)-С(10)-Н(10)	119.1
N(1)-H(1A)	0.75(3)	N(2)-N(3)-S(1)	115.40(12)	C(11)-C(10)- H(10)	119.1
N(1)-H(1B)	0.84(3)	C(14)-N(2)-N(3)	105.51(15)	C(4)-C(3)-C(2)	121.5(2)
C(8)-C(9)	1.385(3)	C(12)-C(13)-C(8)	120.69(18)	С(4)-С(3)-Н(3)	119.2
C(5)-C(6)	1.377(3)	C(12)-C(13)-C(14)	133.97(18)	C(2)-C(3)-H(3)	119.2
C(5)-C(4)	1.384(3)	C(8)-C(13)-C(14)	105.25(16)	C(7)-C(6)-C(5)	119.6(2)
C(12)-C(11)	1.373(3)	C(14)-N(1)-H(1A)	112(2)	C(7)-C(6)-H(6)	120.2
С(12)-Н(12)	0.9300	C(14)-N(1)-H(1B)	122(2)	C(5)-C(6)-H(6)	120.2
C(9)-C(10)	1.378(3)	H(1A)-N(1)-H(1B)	119(3)	C(12)-C(11)-C(10)	121.0(2)
С(9)-Н(9)	0.9300	C(9)-C(8)-C(13)	121.71(18)	C(12)-C(11)- H(11)	119.5
C(4)-C(3)	1.373(3)	C(9)-C(8)-N(3)	131.79(19)	C(10)-C(11)- H(11)	119.5
C(4)-H(4)	0.9300	C(13)-C(8)-N(3)	106.50(16)	C(6)-C(7)-C(2)	121.3(2)
C(2)-C(7)	1.378(3)	C(6)-C(5)-C(4)	120.16(18)	С(6)-С(7)-Н(7)	119.3
C(2)-C(3)	1.382(3)	C(6)-C(5)-S(1)	120.24(15)	С(2)-С(7)-Н(7)	119.3
C(2)-C(1)	1.511(3)	C(4)-C(5)-S(1)	119.59(15)	C(2)-C(1)-H(1C)	109.5

Table S2. Bond lengths [pm] and angles [°] for **3a**.

C(10)-C(11)	1.394(3)	N(2)-C(14)-N(1)	121.1(2)	C(2)-C(1)-H(1D)	109.5
С(10)-Н(10)	0.9300	N(2)-C(14)-C(13)	112.13(17)	H(1C)-C(1)-H(1D)	109.5
C(3)-H(3)	0.9300	N(1)-C(14)-C(13)	126.8(2)	С(2)-С(1)-Н(1Е)	109.5
C(6)-C(7)	1.375(3)	C(11)-C(12)-C(13)	117.9(2)	H(1C)-C(1)-H(1E)	109.5
C(6)-H(6)	0.9300	С(11)-С(12)-Н(12)	121.1	H(1D)-C(1)-H(1E)	109.5
С(11)-Н(11)	0.9300	С(13)-С(12)-Н(12)	121.1		

5. Compound characterizations

1-tosyl-1*H***-indazol-3-amine (3a)**. Brown solid (42 mg, 73% yield); mp 184-186 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.4 Hz, 1H), 7.72 (d, J = 8.0 Hz, 2H), 7.53 (t, J = 7.7 Hz, 1H), 7.46 (d, J = 7.9 Hz, 1H), 7.27 (dd, J = 9.2, 5.7 Hz, 1H), 7.15 (d, J = 8.1 Hz, 2H), 4.79 (s, 2H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.0, 144.6, 142.4, 133.9, 129.7, 129.5, 127.4, 123.8, 119.7, 119.4, 114.3, 21.5; HRMS (ESI-TOF): Anal. Calcd. For C₁₄H₁₃N₃O₂S: 288.0801, Found: 288.0798 (M+H⁺).

4-methoxy-1-tosyl-1*H***-indazol-3-amine (3b)**. White solid (41.8 mg, 66% yield); mp 212-213 °C; ¹H NMR (400 MHz, DMSO) δ 7.60 (d, *J* = 8.0 Hz, 2H), 7.55 – 7.44 (m, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 6.76 (d, *J* = 7.7 Hz, 1H), 6.08 (s, 2H), 3.84 (s, 3H), 2.27 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 155.2, 154.9, 145.3, 144.6, 133.5, 132.1, 130.1, 127.4, 110.3, 106.6, 105.2, 56.1, 21.4; HRMS (ESI-TOF): Anal. Calcd. For C₁₅H₁₅N₃O₃S: 318.0907, Found: 318.0907 (M+H⁺).

5-methyl-1-tosyl-1*H***-indazol-3-amine (3c)**. Yellow solid (51.2 mg, 85% yield); mp 204-205 °C; ¹H NMR (400 MHz, DMSO) δ 7.85 (d, J = 8.5 Hz, 1H), 7.56 (d, J = 7.4 Hz, 3H), 7.39 (d, J = 8.5 Hz, 1H), 7.27 (d, J = 8.1 Hz, 2H), 6.46 (s, 2H), 2.37 (s, 3H), 2.27 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 156.0, 145.1, 141.1, 133.9, 133.4, 131.5, 130.1, 127.4, 121.6, 121.0, 114.1, 21.4, 21.2; HRMS (ESI-TOF): Anal. Calcd. For C₁₅H₁₅N₃O₂S: 302.0958, Found: 302.0954 (M+H⁺).

5-chloro-1-tosyl-1H-indazol-3-amine (3d). Yellow solid (31.5 mg, 49% yield); mp 148-150 °C;

¹H NMR (400 MHz, DMSO) δ 7.97 (d, J = 8.9 Hz, 1H), 7.92 (s, 1H), 7.61 (t, J = 8.3 Hz, 3H), 7.32 (d, J = 7.9 Hz, 2H), 6.60 (s, 2H), 2.31 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 155.1, 145.5, 141.2, 133.2, 130.3, 130.2, 128.7, 127.5, 122.4, 121.2, 115.9, 21.5; HRMS (ESI-TOF): Anal. Calcd. For C₁₄H₁₂ClN₃O₂S: 322.0412, Found: 322.0407 (M+H⁺).

6-methyl-1-tosyl-1*H***-indazol-3-amine (3e)**. Brown solid (48.2 mg, 80% yield); mp 200-201 °C; ¹H NMR (400 MHz, DMSO) δ 7.80 (s, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 2H), 7.26 (d, *J* = 8.1 Hz, 2H), 7.14 (d, *J* = 8.1 Hz, 1H), 6.46 (s, 2H), 2.47 (s, 3H), 2.26 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 155.9, 145.1, 143.2, 140.3, 133.7, 130.1, 127.5, 126.0, 121.1, 119.2, 114.1, 22.1, 21.4; HRMS (ESI-TOF): Anal. Calcd. For C₁₅H₁₅N₃O₂S 302.0958, Found: 302.0954 (M+H⁺).

6-fluoro-1-tosyl-1*H***-indazol-3-amine (3f)**. Yellow solid (50 mg, 82% yield); mp 68-70 °C; ¹H NMR (400 MHz, DMSO) δ 7.88 (dd, J = 8.4, 5.3 Hz, 1H), 7.66 (dd, J = 15.7, 8.8 Hz, 3H), 7.32 (d, J = 8.0 Hz, 2H), 7.22 (t, J = 8.9 Hz, 1H), 6.61 (s, 2H), 2.30 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 164.8, 162.3, 155.6, 145.5, 143.4, 143.2, 133.3, 130.3, 127.6, 123.7, 123.6, 117.9, 113.2, 113.0, 101.2, 100.9, 21.5; HRMS (ESI-TOF): Anal. Calcd. For C₁₄H₁₂FN₃O₂S 306.0707, Found: 306.0703 (M+H⁺).

6-chloro-1-tosyl-1*H***-indazol-3-amine (3g)**. Yellowish brown solid (50.7 mg, 79% yield); mp 210-212 °C; ¹H NMR (400 MHz, DMSO) δ 7.96 (s, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 8.4 Hz, 1H), 7.33 (d, J = 7.9 Hz, 2H), 6.62 (s, 2H), 2.30 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 155.4, 145.6, 143.0, 135.2, 133.4, 130.3, 127.6, 124.9, 123.2, 119.9, 113.8, 21.5; HRMS (ESI-TOF): Anal. Calcd. For C₁₄H₁₂ClN₃O₂S 322.0412, Found: 322.0408 (M+H⁺).

6-bromo-1-tosyl-1*H***-indazol-3-amine (3h)**. Brown solid (47.5 mg, 65% yield); mp 206-207 °C; ¹H NMR (400 MHz, DMSO) δ 8.11 (s, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.4 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 6.63 (s, 2H), 2.30 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 155.5, 145.6, 143.2, 133.4, 130.3, 127.6, 127.5, 123.7, 123.4, 120.2, 116.7, 21.5; HRMS (ESI-TOF): Anal. Calcd. For C₁₄H₁₂BrN₃O₂S 365.9906, Found: 365.9901 (M+H⁺).

1-tosyl-1*H***-pyrazol-3-amine (3i)**. White solid (27.2 mg, 57%); mp 150-152 °C; ¹H NMR (400 MHz, DMSO) δ 7.99 (d, J = 2.4 Hz, 1H), 7.71 (d, J = 7.8 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 5.85 (d, J = 2.5 Hz, 1H), 5.59 (s, 2H), 2.38 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 161.1, 145.5, 134.9, 134.4, 130.4, 127.7, 102.2, 21.6; HRMS (ESI-TOF): Anal. Calcd. For C₁₀H₁₁N₃O₂S 238.0645, Found: 238.0647 (M+H⁺).

1-(phenylsulfonyl)-1*H***-indazol-3-amine (4a)**. Yellow solid (45.3 mg, 83% yield); mp 187-190 °C; ¹H NMR (400 MHz, DMSO) δ 7.99 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 7.72 (d, J = 7.9 Hz, 2H), 7.66 – 7.56 (m, 2H), 7.50 (t, J = 7.5 Hz, 2H), 7.33 (t, J = 7.5 Hz, 1H), 6.56 (s, 2H); ¹³C NMR (101 MHz, DMSO) δ 156.2, 142.6, 136.3, 134.5, 130.2, 129.7, 127.4, 124.5, 121.6, 121.2, 114.3; HRMS (ESI-TOF): Anal. Calcd. For C₁₃H₁₁N₃O₂S 274.0645, Found: 274.0641 (M+H⁺).

1-((4-methoxyphenyl)sulfonyl)-1*H***-indazol-3-amine (4b)**. Yellow solid (42.4 mg, 70% yield); mp 110-112 °C; ¹H NMR (400 MHz, DMSO) δ 7.97 (d, J = 8.4 Hz, 1H), 7.79 (d, J = 7.9 Hz, 1H), 7.64 (d, J = 8.5 Hz, 2H), 7.57 (t, J = 7.7 Hz, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.00 (d, J = 8.6 Hz, 2H), 6.52 (s, 2H), 3.76 (s, 3H).; ¹³C NMR (101 MHz, DMSO) δ 163.8, 156.0, 142.6, 130.1, 129.8, 127.9, 124.4,

121.5, 114.9, 114.3, 79.6, 56.2; HRMS (ESI-TOF): Anal. Calcd. For C₁₄H₁₃N₃O₃S 304.0750, Found: 304.0746 (M+H⁺).

1-((4-isopropylphenyl)sulfonyl)-1*H***-indazol-3-amine (4c)**. Yellow solid (44.1 mg, 70% yield); mp 118-120 °C; ¹H NMR (400 MHz, DMSO) δ 7.99 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 7.9 Hz, 1H), 7.65 (d, J = 8.1 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.40 – 7.29 (m, 3H), 6.54 (s, 2H), 2.93 – 2.82 (m, 1H), 1.12 (s, 3H), 1.11 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 155.9, 155.5, 142.4, 134.1, 130.2, 127.7, 127.6, 124.4, 121.6, 121.0, 114.1, 33.8, 23.7; HRMS (ESI-TOF): Anal. Calcd. For C₁₆H₁₇N₃O₂S 316.1114, Found: 316.1111 (M+H⁺).

1-((4-(*tert***-butyl)phenyl)sulfonyl)-1***H***-indazol-3-amine (4d). Yellow solid (54 mg, 82% yield); mp 116-118 °C; ¹H NMR (400 MHz, DMSO) \delta 7.99 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 7.9 Hz, 1H), 7.66 (d, J = 8.3 Hz, 2H), 7.61 – 7.49 (m, 3H), 7.33 (t, J = 7.5 Hz, 1H), 6.54 (s, 2H), 1.21 (s, 9H); ¹³C NMR (101 MHz, DMSO) \delta 157.7, 155.8, 142.4, 133.9, 130.2, 127.4, 126.7, 124.4, 121.6, 121.0, 114.1, 35.4, 31.1; HRMS (ESI-TOF): Anal. Calcd. For C₁₇H₁₉N₃O₂S 330.1271, Found: 330.1267 (M+H⁺).**

1-((4-fluorophenyl)sulfonyl)-1*H*-indazol-3-amine (4e). Brown solid (44.8 mg, 77% yield); mp 182-184 °C; ¹H NMR (400 MHz, DMSO) δ 7.98 (d, *J* = 8.3 Hz, 1H), 7.88 – 7.69 (m, 3H), 7.59 (t, *J* = 7.7 Hz, 1H), 7.35 (dd, *J* = 10.5, 6.9 Hz, 3H), 6.59 (s, 2H); ¹⁹F NMR (376 MHz, DMSO) δ -103.76; ¹³C NMR (101 MHz, DMSO) δ 165.5 (d, *J* = 255.5 Hz), 156.3, 142.6, 132.6 (d, *J* = 3.0 Hz), 130.6 (d, *J* = 10.1 Hz), 130.3, 124.7, 121.6, 121.3, 117.1 (d, *J* = 22.2 Hz), 114.3; HRMS (ESI-TOF): Anal. Calcd. For C₁₃H₁₀FN₃O₂S 292.0551, Found: 292.0546 (M+H⁺).

1-((4-chlorophenyl)sulfonyl)-1H-indazol-3-amine (4f). Brown solid (47.9 mg, 78% yield); mp

169-170 °C; ¹H NMR (400 MHz, DMSO) δ 7.97 (d, *J* = 8.4 Hz, 1H), 7.81 (d, *J* = 7.9 Hz, 1H), 7.70 (d, *J* = 8.3 Hz, 2H), 7.60 (t, *J* = 7.2 Hz, 3H), 7.35 (t, *J* = 7.5 Hz, 1H), 6.61 (s, 2H); ¹³C NMR (101 MHz, DMSO) δ 156.4, 142.5, 139.6, 135.0, 130.4, 129.9, 129.3, 124.8, 121.7, 121.3, 114.3; HRMS (ESI-TOF): Anal. Calcd. For C₁₃H₁₀ClN₃O₂S 308.0250, Found: 308.0250 (M+H⁺).

1-((4-bromophenyl)sulfonyl)-1*H*-indazol-3-amine (4g). Yellow solid (49.8 mg, 71% yield); mp 110-111 °C; ¹H NMR (400 MHz, DMSO) δ 7.96 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.74 (d, J = 8.3 Hz, 2H), 7.65 – 7.56 (m, 3H), 7.36 (t, J = 7.5 Hz, 1H), 6.61 (s, 2H); ¹³C NMR (101 MHz, DMSO) δ 156.4, 142.5, 135.4, 132.9, 130.4, 129.3, 128.7, 124.8, 121.7, 121.3, 114.3; HRMS (ESI-TOF): Anal. Calcd. For C₁₃H₁₀BrN₃O₂S 351.9750, Found: 351.9743 (M+H⁺).

1-((4-(trifluoromethyl)phenyl)sulfonyl)-1*H***-indazol-3-amine (4h). Yellow solid (57.3 mg, 84% yield); mp 182-183 °C; ¹H NMR (400 MHz, DMSO) δ 8.00 (d, J = 8.3 Hz, 1H), 7.91 (q, J = 9.1 Hz, 4H), 7.83 (d, J = 7.8 Hz, 1H), 7.61 (t, J = 7.7 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 6.64 (s, 2H); ¹⁹F NMR (376 MHz, DMSO) δ -61.92; ¹³C NMR (101 MHz, DMSO) δ 156.5, 142.4, 140.0, 133.0 (q, J = 32.3 Hz), 130.5, 128.5, 127.0 (d, J = 3.0 Hz), 124.9, 122.2, 121.8, 121.4, 114.2; HRMS (ESI-TOF): Anal. Calcd. For C₁₄H₁₀F₃N₃O₂S 342.0519, Found: 342.0514 (M+H⁺).**

1-((4-nitrophenyl)sulfonyl)-1*H***-indazol-3-amine (4i)**. Brown solid (54.1 mg, 85% yield); mp 196-198 °C; ¹H NMR (400 MHz, DMSO) δ 8.32 (d, *J* = 8.5 Hz, 2H), 7.98 (t, *J* = 9.9 Hz, 3H), 7.82 (d, *J* = 7.9 Hz, 1H), 7.63 (t, *J* = 7.8 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 1H), 6.68 (s, 2H); ¹³C NMR (101 MHz, DMSO) δ 156.6, 151.0, 142.3, 141.2, 130.6, 129.1, 125.0, 121.8, 121.4, 114.3; HRMS (ESI-TOF): Anal. Calcd. For C₁₃H₁₀N₄O₄S 319.0496, Found: 319.0491 (M+H⁺).

1-((2-chlorophenyl)sulfonyl)-1*H***-indazol-3-amine (4j)**. Brown solid (24.6 mg, 40% yield); mp 156-158 °C; ¹H NMR (400 MHz, DMSO) δ 8.03 (d, *J* = 7.9 Hz, 1H), 7.94 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 7.8 Hz, 1H), 7.73 – 7.67 (m, 1H), 7.66 – 7.56 (m, 3H), 7.35 (t, *J* = 7.5 Hz, 1H), 6.53 (s, 2H); ¹³C NMR (101 MHz, DMSO) δ 155.1, 142.4, 136.0, 135.8, 132.6, 132.2, 132.1, 130.0, 128.4, 123.9, 121.7, 119.7, 114.1; HRMS (ESI-TOF): Anal. Calcd. For C₁₃H₁₀ClN₃O₂S 308.0255, Found: 308.0251 (M+H⁺).

1-((3-nitrophenyl)sulfonyl)-1*H***-indazol-3-amine (4k)**. Yellow solid (26.7 mg, 42% yield); mp 74-76 °C; ¹H NMR (400 MHz, DMSO) δ 8.45 (d, J = 8.2 Hz, 1H), 8.38 (s, 1H), 8.11 (d, J = 7.8 Hz, 1H), 8.07 – 7.89 (m, 2H), 7.82 (t, J = 7.6 Hz, 2H), 7.64 (t, J = 7.8 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 6.69 (s, 2H); ¹³C NMR (101 MHz, DMSO) δ 156.8, 148.1, 142.4, 137.4, 133.2, 131.9, 130.6, 129.2, 125.13, 122.1, 121.8, 121.5, 114.3; HRMS (ESI-TOF): Anal. Calcd. For C₁₃H₁₀N₄O₄S 319.0496, Found: 319.0493 (M+H⁺).

1-(m-tolylsulfonyl)-1*H***-indazol-3-amine (4l)**. Yellow solid (46 mg, 80% yield); mp 224-226 °C; ¹H NMR (400 MHz, DMSO) δ 7.98 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 7.58 (t, J = 7.7 Hz, 1H), 7.39 – 7.29 (m, 3H), 7.24 (s, 1H), 6.53 (s, 2H); ¹³C NMR (101 MHz, DMSO) δ 155.9, 142.4, 139.3, 136.5, 136.0, 130.1, 124.8, 124.4, 121.6, 121.0, 114.2, 21.1; HRMS (ESI-TOF): Anal. Calcd. For C₁₄H₁₃N₃O₂S 288.3443, Found: 288.3441 (M+H⁺).

1-((3-bromophenyl)sulfonyl)-1*H*-indazol-3-amine (4m). Yellow solid (67.4 mg, 96% yield), mp 199-200 °C; ¹H NMR (400 MHz, DMSO) δ 7.98 (d, J = 8.4 Hz, 1H), 7.83 (t, J = 6.6 Hz, 3H), 7.69 (d, J = 8.0 Hz, 1H), 7.61 (t, J = 7.7 Hz, 1H), 7.47 (t, J = 7.9 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 6.66 (s, 2H); ¹³C NMR (101 MHz, DMSO) δ 156.6, 142.5, 138.0, 137.4, 132.0, 130.4, 129.7, 126.4, 124.9, 122.4, 121.7, 121.4, 114.3; HRMS (ESI-TOF): Anal. Calcd. For C₁₃H₁₀BrN₃O₂S 351.9750, Found: 351.9744 (M+H⁺).

1-(mesitylsulfonyl)-1*H***-indazol-3-amine (4n)**. Yellow solid (50.4 mg, 80% yield), mp 106-108 °C; ¹H NMR (400 MHz, DMSO) δ 7.94 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 7.9 Hz, 1H), 7.57 (t, *J* = 7.7 Hz, 1H), 7.32 (t, *J* = 7.5 Hz, 1H), 7.07 (s, 2H), 6.40 (s, 2H), 2.52 (s, 6H), 2.27 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 154.5, 144.0, 141.8, 140.6, 132.9, 132.4, 129.8, 123.4, 121.7, 119.6, 113.7, 23.0, 20.9; HRMS (ESI-TOF): Anal. Calcd. For C₁₆H₁₇N₃O₂S 316.1114, Found: 316.1111 (M+H⁺).

1-((3,5-dimethylphenyl)sulfonyl)-1*H***-indazol-3-amine (40)**. Brown solid (45.8 mg, 76% yield); mp 214-216 °C; ¹H NMR (400 MHz, DMSO) δ 7.98 (d, *J* = 8.3 Hz, 1H), 7.80 (d, *J* = 7.8 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 1H), 7.42 – 7.27 (m, 3H), 7.23 (s, 1H), 6.54 (s, 2H), 2.23 (s, 6H); ¹³C NMR (101 MHz, DMSO) δ 155.9, 142.4, 139.3, 136.6, 135.9, 130.1, 124.8, 124.3, 121.6, 121.0, 114.2, 21.1; HRMS (ESI-TOF): Anal. Calcd. For C₁₅H₁₅N₃O₂S 302.0958, Found: 302.0953 (M+H⁺).

1-(naphthalen-1-ylsulfonyl)-1*H***-indazol-3-amine (4p)**. Brown solid (53 mg, 82% yield); mp 90-92 °C; ¹H NMR (400 MHz, DMSO) δ 8.81 (d, J = 8.3 Hz, 1H), 8.26 (dd, J = 13.8, 7.8 Hz, 2H), 8.04 (t, J = 9.3 Hz, 2H), 7.81 (d, J = 7.9 Hz, 1H), 7.62 (dt, J = 15.2, 7.9 Hz, 4H), 7.32 (t, J = 7.5 Hz, 1H), 6.47 (s, 2H); ¹³C NMR (101 MHz, DMSO) δ 155.1, 141.8, 136.0, 134.2, 132.9, 130.8, 130.1, 129.4, 128.7, 128.3, 127.6, 125.0, 125.0, 124.2, 121.7, 120.6, 113.9;; HRMS (ESI-TOF): Anal. Calcd. For C₁₇H₁₃N₃O₂S 324.0801, Found: 324.0797 (M+H⁺).

1-(naphthalen-2-ylsulfonyl)-1*H***-indazol-3-amine (4q)**. Brown solid (49.2 mg, 76% yield); mp 90-92 °C; ¹H NMR (400 MHz, DMSO) δ 8.50 (s, 1H), 8.10 (dd, *J* = 17.1, 8.1 Hz, 2H), 7.96 (dd, *J* = 15.7, 8.3 Hz, 2H), 7.78 (d, *J* = 7.9 Hz, 1H), 7.70 – 7.56 (m, 4H), 7.32 (t, *J* = 7.5 Hz, 1H), 6.55 (s, 2H); ¹³C NMR (101 MHz, DMSO) δ 156.1, 142.6, 135.1, 133.5, 131.8, 130.2, 130.0, 129.8, 129.7, 129.2, 128.34, 128.31, 124.5, 122.3, 121.6, 121.2, 114.3; HRMS (ESI-TOF): Anal. Calcd. For C₁₇H₁₃N₃O₂S 324.0801, Found: 324.0796 (M+H⁺).

6. Spectroscopic data for products

S28

S33

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

S35

S36

