Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

|--|

Fig. S1	IR spectra of tricarbonyl rhenium(I) complexes a) 3 , and b) 4 .	S2
Fig. S2	¹ H NMR spectrum of 3 in acetone- d_6 .	S3
Fig. S3	¹ H NMR spectrum of 4 in acetone- d_6 .	S4
Fig. S4	13 C NMR spectrum of 3 in acetone-d ₆ .	S5
Fig. S5	13 C NMR spectrum of 4 in acetone-d ₆ .	S6
Fig. S6	Electronic absorption spectra of 3 in different solvents.	S7
Fig. S7	Electronic absorption spectrum of 3 in dichloromethane.	S8
Fig. S8	Electronic absorption spectrum of 4 in dichloromethane.	S9
Table S1	Atomic coordinates of the optimized structure of 3 .	S10
Table S2	Atomic coordinates of the optimized structure of 4 .	S11
Table S3	Selected calculated bond lengths, and bond angles of complexes 3 and 4 calculated using B3LYP/LANL2DZ method.	S13
Fig. S9	Calculated electronic absorption spectra of 3 and 4 using B3LYP/LANL2DZ method in combination with SMD solvation model.	S14
Fig. \$10	Calculated electronic absorption spectra of 3 and 4 using CAM-B3LYP/LANL2DZ method in combination with SMD solvation model.	S15
Table S4	Computed excitation energies (eV), electronic transition configurations and oscillator strengths (f) of rhenium(I) compounds (selected, $f > 0.001$) (Selected)	S16
Table S5	Selected frontiers molecular orbitals of 4 in the singlet state calculated at B3LYP/LANL2DZ level of theory.	S18
Fig. S10	The dose response curve of complex 3 on Caco-2, MCF7, HepG2 and splenocytes cell lines showing the IC_{50} at each cell line.	S21
Fig. S11	The dose response curve of complex 4 on Caco-2, MCF7, HepG2 and splenocytes cell lines showing the IC_{50} at each cell line.	S22
Table S6	The IC ₅₀ of compounds 3 and 4 each sample on different cell lines.	S23
Fig. S12	The DNA fragmentation by TUNEL assay in Caco-2 cell line. The photos show high incorporation of BrdU-Red because of DNA fragmentation in comparison to the control. Magnification 20X. Scale bar 50 μm.	S24
Fig. \$13	The DNA fragmentation by TUNEL assay in MCF7 cell line. The photos show high incorporation of BrdU-Red in complex 4 more than complex 3 because of DNA fragmentation in comparison to the control. Magnification 20X. Scale bar 50 μ m.	S25
Fig. S14	The DNA fragmentation by TUNEL assay in HepG2 cell line. The photos show high incorporation of BrdU-Red because of DNA fragmentation in comparison to the control. Magnification 20X. Scale bar 50 μ m.	S26

b)

Fig. S1 ATR-IR spectra of tricarbonyl rhenium(I) complexes a) 3, and b) 4.

Fig. S2 ¹H NMR spectrum of 3 in acetone-d₆.

Fig. S3 ¹H NMR spectrum of 4 in acetone-d₆.

Fig. S4 13 C NMR spectrum of 3 in acetone-d₆.

Fig. S5 13 C NMR spectrum of 4 in acetone-d₆.

Fig. S6 Electronic absorption spectra of 3 in different solvents.

Fig. S7 Electronic absorption spectrum of 3 in dichloromethane.

Fig. S8 Electronic absorption spectrum of 4 in dichloromethane.

Table S1 Atomic coordinates of the optimized structure of 3.					
Center	Center Atomic Number		Coordinates (Angstroms)		
Number	Atomic Number	Atomic Type	Х	Y	Z
1	8	0	-1.916633	-2.956455	-0.258332
2	8	0	2.398921	-2.955764	-1.242609
3	6	0	3.14213	0.944035	-0.2337
4	6	0	-2.885246	1.237185	-0.906194
5	6	0	-4.575999	0.634578	1.271055
6	7	0	2.26975	2.932181	0.365476
7	6	0	-4.278939	1.247178	-1.079717
8	6	0	5.510314	0.440355	-0.508827
9	7	0	-0.883956	0.921887	0.557984
10	6	0	-3.179413	0.639809	1.441487
11	6	0	5.827732	1.790013	-0.161472
12	6	0	-0.214787	2.24905	0.30152
13	7	0	1.742444	0.821265	-0.181066
14	6	0	-2.335394	0.943285	0.357129
15	6	0	4.828887	2.7269	0.151769
16	6	0	-5.106118	0.949471	0.013654
17	6	0	3.494493	2.286415	0.110713
18	6	0	4.177993	0.063153	-0.532874
19	6	0	-1.055391	-2.145287	-0.316963
20	6	0	1.25991	2.014029	0.175318
21	6	0	1.598185	-2.143447	-0.919213
22	1	0	-2.757233	0.389626	2.411847
23	1	0	-5.230396	0.391014	2.101384
24	1	0	-4.708941	1.4651	-2.051777
25	1	0	-2.245544	1.425025	-1.763627
26	1	0	6.303624	-0.263645	-0.742939
27	1	0	6.87121	2.09302	-0.139089
28	1	0	5.087429	3.747985	0.41624
29	1	0	2.149807	3.89453	0.652235
30	1	0	-0.675896	0.628459	1.528673
31	1	0	-0.610964	2.658187	-0.634263
32	1	0	-0.444997	2.965564	1.102755
33	75	0	0.335945	-0.811456	-0.376176
34	35	0	0.818145	-1.16627	2.291948
35	6	0	-0.070465	-0.372158	-2.176188
36	8	0	-0.337406	-0.06676	-3.300859
37	17	0	-6.909007	0.962405	-0.211399
Rotational constants (GHz)			0.2471111	0.0889260	0.0829737

Table S2 Atomic coordinates of the optimized structure of 3.						
Center		mic Number Atomic Tune		Coordinates (Angstroms)		
Number	Atomic Number	Atomic Type	Х	Y	Z	
1	8	0	-1.423883	-3.023069	-0.465851	
2	8	0	2.826853	-2.70517	-1.665058	
3	6	0	3.473221	1.068926	-0.228576	
4	6	0	-2.580491	1.240744	-0.557496	
5	6	0	-4.124321	0.114709	1.511332	
6	7	0	2.5628	2.928711	0.65735	
7	6	0	-3.975449	1.182707	-0.677143	
8	6	0	5.840822	0.701534	-0.67239	
9	7	0	-0.502	0.78082	0.753173	
10	6	0	-2.729682	0.18005	1.639287	
11	6	0	6.127456	2.009679	-0.172922	
12	6	0	0.105173	2.154958	0.631775	
13	7	0	2.08343	0.881518	-0.125091	
14	6	0	-1.957094	0.746581	0.606292	
15	6	0	5.113132	2.85855	0.30051	
16	6	0	-4.7566	0.623801	0.357902	
17	6	0	3.794776	2.371814	0.265228	
18	6	0	4.523101	0.275363	-0.682886	
19	6	0	-0.600597	-2.171541	-0.470938	
20	6	0	1.577994	1.999256	0.401791	
21	6	0	2.013293	-1.975145	-1.205472	
22	1	0	-2.243961	-0.221091	2.525589	
23	1	0	-4.734841	-0.324685	2.294385	
24	1	0	-4.465388	1.552991	-1.570808	
25	1	0	-1.990754	1.635099	-1.379955	
26	1	0	6.64576	0.065336	-1.028874	
27	1	0	7.159447	2.350246	-0.15941	
28	1	0	5.348589	3.848587	0.679745	
29	1	0	2.423815	3.841543	1.069841	
30	1	0	-0.236504	0.380009	1.669839	
31	1	0	-0.355557	2.663925	-0.221341	
32	1	0	-0.103313	2.754361	1.529309	
33	6	0	-6.240272	0.542841	0.271395	
34	8	0	-6.981538	0.068128	1.152743	
35	8	0	-6.730461	1.062492	-0.912194	
36	6	0	-8.191	1.012803	-1.103195	
37	1	0	-8.694228	1.577187	-0.311876	
38	1	0	-8.362179	1.465842	-2.080577	
39	1	0	-8.537247	-0.025167	-1.083531	
40	75	0	0.731619	-0.777466	-0.443019	
41	35	0	1.373898	-1.413715	2.138346	
42	6	0	0.206952	-0.150826	-2.15592	
43	8	0	-0.133918	0.268571	-3.22183	

Rotational constants (GHz)	0.2374804	0.0690647	0.0656906

B3LYP/LANL2DZ method.					
	3	4			
Re–C19	1.92832	1.92848			
Re–C21	1.91372	1.91271			
Re–C35 (Re–C42)	1.89689	1.89789			
Re-Br	2.73446	2.73510			
Re–N9	2.31631	2.31969			
Re-N13	2.16381	2.16349			
C19–O1	1.18455	1.18445			
C21–O2	1.18559	1.18576			
C35–O36 (C42–O43)	1.19558	1.19509			
C19–Re–C21	90.18172	90.25669			
C19–Re–C35 (C19–Re–C42)	91.99098	91.98524			
C19–Re–Br	90.43087	90.44260			
C19–Re–N9	97.19441	97.22122			
C19–Re–N13	171.17513	171.14605			
C21–Re–C35 (C21–Re–C42)	91.90470	91.84634			
C21–Re–Br	94.02846	94.19794			
C21–Re–N9	169.31287	169.28069			
C21–Re–N13	97.01016	96.89459			
C35–Re–Br (C42–Re–Br)	173.58420	173.47596			
C35–Re–N9 (C42–Re–N9)	95.54113	78.13928			
C35–Re–N13 (C42–Re–N13)	92.87072	92.99090			
Br–Re–N9	78.25587	78.13928			
Br–Re–N13	83.99028	83.85523			
N9-Re-N13	75.00801	75.01254			

Table S3 Selected calculated bond lengths, and bond angles of complexes 3 and 4 calculated using

Fig. S9 Calculated electronic absorption spectra of 3 and 4 using B3LYP/LANL2DZ method in combination with SMD solvation model.

Fig. S10 Calculated electronic absorption spectra of **3** and **4** using CAM-B3LYP/LANL2DZ method in combination with SMD solvation model.

Table S4 Computed excitation energies (eV), electronic transition configurations and oscillator						
strengths (f) of rhenium(I) compounds (selected, f > 0.001) (Selected)						
Energy	Wavelength	f	Major contributions			
(cm)	(nm)					
• B3LYP	/LANL2DZ method					
~	3					
17569	569	0.0012	HOMO−2(β)→LUMO(β) (40%)			
21181	472	0.0011	HOMO(β)→LUMO(β) (58%)			
22305	448	0.0001	HOMO−1(β)→LUMO(β) (83%)			
22679	440	0.0001	HOMO–4(β)→LUMO(β) (63%)			
24672	405	0.0003	HOMO−3(β) →LUMO(β) (70%)			
34310	291	0.0083	HOMO(α)→L+1(α) (36%)			
✓	Δ					
		1	1			
17518	570	0.0013	HOMO−2(β) →LUMO(β) (30%), HOMO(β)→LUMO(β) (45%)			
20766	481	0.001	HOMO−2(β)→LUMO(β) (22%), HOMO(β)→LUMO(β) (51%)			
21781	459	0.0001	HOMO-1(β) \rightarrow LUMO(β) (85%)			
29714	336	0.0017	$HOMO(\alpha) \rightarrow LUMO(\alpha)$ (22%)			
31167	320	0.0074	HOMO(α) \rightarrow LUMO(α) (26%), HOMO(α) \rightarrow LUMO+1(α) (23%)			
33635	297	0.0109	HOMO-2(α) \rightarrow LUMO+1(α) (20%)			
- CAN4		thad				
~	3					
20099	497	0.0013	HOMO−2(β)→LUMO(β) (25%), HOMO(β)→LUMO(β) (21%)			
26087	383	0	HOMO–4(β)→LUMO(β) (78%)			
28876	346	0.0001	HOMO(α)→LUMO(α) (19%),			
			HOMO(β)→LUMO+1(β) (22%)			
29906	334	0.0001	HOMO-1(α) \rightarrow LUMO(α) (22%),			
			HOMO−1(β)→LUMO+1(β) (24%)			
32157	310	0.0063	HOMO(α)→LUMO(α) (22%),			
			HOMO(β)→LUMO+1(β) (24%)			
34315	291	0.0021	HOMO−1(α)→LUMO+2(α) (22%)			
34993	285	0.0051	HOMO−2(β)→LUMO(β) (21%)			
38135	262	0.002	HOMO–6(β)→LUMO(β) (35%)			
√ 4						
20179	495	0.0014	HOMO−3(β)→LUMO(β) (30%)			
25437	393	0	HOMO−5(α)→LUMO(α) (22%),			
			HOMO–5(β)→LUMO+1(β) (22%)			

26222	381	0	HOMO–4(β)→LUMO(β) (78%)
32014	312	0.0057	HOMO(β)→LUMO+2(β) (21%)
34567	289	0.0054	HOMO−2(β)→LUMO(β) (26%)

Fig. S10 The dose response curve of complex **3** on Caco-2, MCF7, HepG2 and splenocytes cell lines showing the IC_{50} at each cell line.

Fig. S11 The dose response curve of complex 4 on Caco-2, MCF7, HepG2 and splenocytes cell lines showing the IC_{50} at each cell line.

IC₅₀ (μg/mL)	Caco-2	MCF7	HepG2	Splenocytes
3	93.74 ± 0.02	155.85 ± 1.07	124.6 ± 37.46	NA
4	149.73 ± 19.75	203.83 ± 9.87	289.3 ± 56.9	NA

Table S6 The IC₅₀ of compounds 3 and 4 each sample on different cell lines.

NA denotes Not available

Fig. S12 The DNA fragmentation by TUNEL assay in Caco-2 cell line. The photos show high incorporation of BrdU-Red because of DNA fragmentation in comparison to the control. Magnification 20X. Scale bar 50 μ m.

MCF7	DAPI	DAPI + BrdU-Red
Control		
3		
4		

Fig. S13 The DNA fragmentation by TUNEL assay in MCF7 cell line. The photos show high incorporation of BrdU-Red in complex **4** more than complex **3** because of DNA fragmentation in comparison to the control. Magnification 20X. Scale bar 50 μ m.

Fig. S14 The DNA fragmentation by TUNEL assay in HepG2 cell line. The photos show high incorporation of BrdU-Red because of DNA fragmentation in comparison to the control. Magnification 20X. Scale bar 50 μ m.