Electronic Supporting Information (ESI)

Mo(VI) complexes of amide-imine conjugates for tuning the selectivity of fluorescence recognition of Y(III) *vs.* Pb(II)

Sudeshna Chatterjee, Sabyasachi Ta, SomnathKhanra, and Debasis Das* Department of Chemistry, The University of Burdwan, Burdwan, 713104, W.B., India

1. General method of UV-Vis and fluorescence titration

Stock solution of **M1** and **M2** are prepared (20 μ M) in) in HEPES buffered EtOH/H₂O (4/1, v/v) media, pH 7 for UV-Vis and fluorescence titrations. Working solutions of **M1**, **M2** and Y³⁺, Pb²⁺ are prepared from their respective stock solutions.The cells having path length1 cm are used for absorption and emission studies. Fluorescence measurements have been performed using 5 nm x 5 nm slit width.

2. Job's plot from fluorescence experiment

A series of solutions containing M1, M2 and Y³⁺, Pb²⁺are prepared such that the total concentration of Y³⁺, Pb²⁺ and M1, M2 remained constant (20 μ M) in all the sets. The mole fractions (**x**) of M1 and M2 are varied from 0.1 to 0.9. The fluorescence intensity at 527 nm and 503 nm for M1-Y³⁺ and M1-Pb²⁺ are plotted respectively against the mole fraction of Y³⁺ and Pb²⁺. Similarly the fluorescence intensity at 497 nm for M2-Y³⁺ is plotted against the mole fraction of Y³⁺.

3. Determination of binding constant

The binding constants of M1 and M2 for sensed cations are determined using Benesi-Hildebrand equation:

$$\frac{F_{max} - F_{min}}{F_{X} - F_{min}} = 1 + \frac{1}{K[C]^{n}}$$

Here \mathbf{F}_{min} , \mathbf{F}_x , and \mathbf{F}_{max} are the emission intensities of **M1** and **M2** in absence of cation, at an intermediate cation concentration, and at a concentration of complete interaction with cation respectively. **K** is the binding constant, **C** is the concentration of cation and **n** is the number of cation bound per molecule (here, $\mathbf{n} = 1$). The value of **K** can be determined from the slopes of the plots.

Figure S1aQTOF mass spectrum of MTA

Figure S1b ¹H NMR spectrum of MTA inDMSO-*d*₆

Figure S1c ¹³C NMR spectrum of MTA

Figure S1d FTIR spectrum of MTA

Figure S2aQTOF mass spectrum of L1

Figure S2b ¹H NMR spectrum of L1 inDMSO-*d*₆

Figure S2c FTIR spectrum of L1

Figure S3aQTOF mass spectrum of L2

Figure S3b ¹H NMR spectrum of L2 inDMSO-d₆

Figure S3c FTIR spectrum of L2

Figure S4aQTOF mass spectrum of M1

Figure S4b FTIR spectrum of M1

Figure S5aQTOF mass spectrum of M2

Figure S5bFTIR spectrum of M2

Figure S6aQTOF mass spectrum of Y1

Figure S6b FTIR spectrum of Y1

Figure S7b FTIR spectrum of Y2

Figure S8aQTOF mass spectrum of P1

Figure S8b FTIR spectrum of P1

Figure S9a Effect of pH on the emission intensities of M1 (λ_{ex} = 410 nm, λ_{em} = 527nm) in presence and absence of Y³⁺

Figure S9b Effect of pH on the emission intensities of compound M1 (λ_{ex} = 410 nm, λ_{em} = 463nm) in presence and absence of Pb²⁺

Figure S9c Effect of pH on the emission intensities of M2 (λ_{ex} = 342 nm, λ_{em} =497nm) in presence and absence of Y³⁺

Figure S10a Interference plots (cations) of **M1** for Y³⁺in fluorescence ($\lambda_{ex} = 410 \text{ nm}$, $\lambda_{em} = 527 \text{ nm}$). 1; Cu²⁺, 2; Cr³⁺, 3; Mn²⁺, 4; Fe²⁺, 5; Fe³⁺, 6; Co²⁺, 7; Ni²⁺, 8; Al³⁺, 9; Zn²⁺, 10; Ag⁺, 11; Cd²⁺, 12; Hg²⁺, 13; La³⁺, 14; Ce⁴⁺, 15; Gd³⁺, 16; Tb³⁺, and 17; Dy³⁺

Figure S10b Interference plots (cations) of **M1** for Pb²⁺in fluorescence ($\lambda_{ex} = 410 \text{ nm}$, $\lambda_{em} = 463 \text{ nm}$). 1; Cu²⁺, 2; Cr³⁺, 3; Mn²⁺, 4; Fe²⁺, 5; Fe³⁺, 6; Co²⁺, 7; Ni²⁺, 8; Al³⁺, 9; Zn²⁺, 10; Ag⁺, 11; Cd²⁺, 12; Hg²⁺, 13; La³⁺, 14; Ce⁴⁺, 15; Gd³⁺, 16; Tb³⁺ and 17; Dy³⁺

Figure S10c Interference plots (cations) of M2 for Y^{3+} in fluorescence ($\lambda_{ex} = 342 \text{ nm}, \lambda_{em} = 497 \text{ nm}$). 1; Cu²⁺, 2; Cr³⁺, 3; Mn²⁺, 4; Fe²⁺, 5; Fe³⁺, 6; Co²⁺, 7; Ni²⁺, 8; Al³⁺, 9; Zn²⁺, 10; Ag⁺, 11; Cd²⁺, 12; Hg²⁺, 13; La³⁺, 14; Ce⁴⁺, 15; Gd³⁺, 16; Tb³⁺ and 17; Dy³⁺

Figure S11a Plot of emission intensities of M1 (20 μ M, λ_{ex} =410 nm, λ_{em} = 527 nm) as a function of externally added Y³⁺(1.0-2500 μ M)

Figure S11b Plot of emission intensities of M1 (20 μ M, λ_{ex} =410 nm, λ_{em} = 463 nm) as a function of externally added Pb²⁺(1.0-2500 μ M).

Figure S11c Plot of emission intensities of M2 (20 μ M, λ_{ex} =342 nm, λ_{em} = 497 nm) as a function of externally added Y³⁺(1.0-2500 μ M)

Figure S12a Determination of the detection limit based on change in the ratio ($\lambda_{ex} = 410$ nm, $\lambda_{em} = 527$ nm) of M1 (20 μ M) with Y³⁺

Figure S12b Determination of the detection limit based on change in the ratio ($\lambda_{ex} = 410$ nm, $\lambda_{em} = 463$ nm) of **M1** (20 μ M) with Pb²⁺

Figure S12c Determination of the detection limit based on change in the ratio ($\lambda_{ex} = 342$ nm, $\lambda_{em} = 497$ nm) of **M2** (20 μ M) with Y³⁺

Figure S13a Benesi–Hildebrand plot for determination of association constant of M1 with Y^{3+} (liner portion only)($\lambda_{ex} = 410 \text{ nm}, \lambda_{em} = 527 \text{nm}$)

Figure S13b Benesi–Hildebrand plot for determination of association constant of **M1** with Pb²⁺(liner portion only)($\lambda_{ex} = 410 \text{ nm}, \lambda_{em} = 463 \text{ nm}$)

Figure S13c Benesi–Hildebrand plot for determination of association constant of M2 with Y^{3+} (liner portion only)($\lambda_{ex} = 342 \text{ nm}, \lambda_{em} = 497 \text{ nm}$)

Figure S14aJob's plot for stoichiometry determination of [M1-Y³⁺] adduct($\lambda_{ex} = 410 \text{ nm } \lambda_{em} = 527 \text{ nm}$)

Figure S14bJob's plot for stoichiometry determination of [M1-Pb²⁺] adduct($\lambda_{ex} = 410 \text{ nm } \lambda_{em} = 463 \text{ nm}$)

Figure S14cJob's plot for stoichiometry determination of [M2-Y³⁺] adduct($\lambda_{ex} = 342 \text{ nm} \lambda_{em} = 497 \text{ nm}$)

Figure S15aChange of absorbance ($\lambda = 426$ nm) of **M1**(20 μ M, pH 7.4) saturated with Pb²⁺ upon irradiation with 2 MeV electrons (noisy curve)

Figure S15bChange of absorbance ($\lambda = 426$ nm) of **M1** (20 μ M, pH 7.4) saturated with Y³⁺ upon irradiation with 2 MeV electrons (noisy curve)

Figure S15cChange of absorbance of 20 μ MM2 at 440 nm (pH 7.4) saturated with Y³⁺ upon irradiation with 2 MeV electrons (noisy curve)

Figure S16a ¹HNMR titration of M1with Y³⁺ and Pb²⁺

Figure S16b ¹HNMR titration of M2with Y³⁺

Figure S17 Excitation, emission and absorption spectra of Y1,P1 and Y2; media and pH mentioned supra

Sl.	Media	Method	Mechanism	LOD	Binding constant	Ref.
No.					_	
1.	60% EtOH	Fluorescence method	CHEF	100 ppb	-	61
2.	H ₂ O	Colorimetric method	Aggregation	57.7 nM	-	62
3.	THF	Fluorescence method	ICT	13 ppm	2.70 ×10 ⁸ M ⁻¹	63
4.	-	Fluorescence method	(LIBS-LIF)	0.3 ppm	-	64
5.	Dilute HNO ₃	Spectrophotometric method	Precipitation	1 ppm	-	65
6.	EtOH/H ₂ O	Fluorescence method	Metal displacement	5.5×10-7M	3.9×10 ⁴ M ⁻¹	This work

Table S1 Comparison among pioneering Y³⁺ selective probes

Sl. No.	Media	Sensing mode	Mechanism	LOD	Binding constant	Ref.
1.	CH ₃ CN/HEPES (9 : 1, v/v)	Turn-Off	PET	0.5 μΜ	2.043×10 ³ M ⁻¹	66
2.	CH ₃ CN	Turn-On	CHEF	13.2 nM	6.1 × 10 ⁵ M ⁻¹	67
3.	1:9 DMSO/H ₂ O (v/v)	Turn-Off	Receptor- metal complex	1.9 nM	$6.76 \times 10^{6} \mathrm{M}^{-1}$	68
4.	$CH_{3}CN/H_{2}O(2:8)$	Turn-On	CHEF	2ppb	-	69
5.	THF/H ₂ O	Turn-On	SPR	0.5 μM	-	70
6.	EtOH/H ₂ O	Turn-On	Metal displacement	26 nM	2.9×10 ⁴ M ⁻¹	Present work

 Table S2 Comparison among pioneering Pb²⁺ selective probes

Table S3Crystal data and structure refinement for M1 and M2

Crystal parameters	M1	M2
CCDC	1941205	1919499
Empirical formula	C ₂₀ H ₂₄ MoN ₃ O ₅	C ₂₀ H ₁₇ MoN ₂ O ₅
Formula weight	482.36	461.30
Crystal system	Orthorhombic	Monoclinic
Space group	P n a 21	P 21/c
Hall group	P 2c -2n	-P 2ybc
Temparature	150 K	150 K
Wavelength	0.71073	0.71073
a/Å	13.7533(17)	7.7042(4)
b/Å	20.0569(10)	16.2189(8)
c/Å	7.505(2)	14.9336(7)
α/°	90	90
$\beta/^{\circ}$	90	102.051(2)
γ/°	90	90
Volume/Å ³	2070.2(6)	1824.89(16)
Ζ	4	4
$\rho_{calc} g/cm^3$	1.548	1.679
μ/mm ⁻¹	0.670	0.755
F(000)	988.0	932.0
F(000')	981.50	925.50
Θmax	25.370	29.180

Index ranges (h,k,lmax)	16,24,9	10,22,20
Reflections collected (R)	0.0843(2267)	0.0264(4175)
wR ₂ (Reflection)	0.2984(2976)	0.0703(4945)
S	1.280	1.074
Npar	266	255
Data completeness	1.45/0.79	0.999

Table S4a Selected bond lengths and angles of M1

Atoms	Bond length	Atoms	Bond angle
Mo O4	1.69(2)	O4 Mo O5	105.7(10)
Mo O5	1.727(16)	O4 Mo O2	98.2(8)
Mo O2	1.925(15)	O5 Mo O2	103.9(7)
Mo O1	2.012(13)	O4 Mo O1	97.2(9)
Mo N2	2.20(2)	O2 Mo O1	149.8(6)
Mo O3	2.385(17)	O4 Mo N2	94.1(9)
O1 C1	1.29(3)	O5 Mo N2	158.2(9)
O2 C11	1.34(3)	O2 Mo N2	81.9(7)
O3 C20	1.40(3)	O1 Mo N2	71.1(7)
N1 C1	1.28(3)	O4 Mo O3	170.3(8)
N1 N2	1.43(3)	O5 Mo O3	83.9(8)
N2 C9	1.34(3)	O2 Mo O3	80.7(6)
N3 C13	1.38(3)	O1 Mo O3	79.8(8)
N3 C18	1.49(4)	N2 Mo O3	76.2(7)
N3 C16	1.53(3)	C1 O1 Mo	119.1(14)
C1 C2	1.51(3)	C11 O2 Mo	133.1(16)
C2 C3	1.40(3)	C20 O3 Mo	128.8(14)
C2 C7	1.42(3)	C1 N1 N2	105.5(18)
C3 C4	1.38(3)	C9 N2 N1	116(2)
C4 C5	1.37(3)	C9 N2 Mo	126.2(17)
C4 C8	1.56(3)	N1 N2 Mo	117.0(12)
C5 C6	1.35(3)	C13 N3 C18	123(2)
C6 C7	1.43(3)	C13 N3 C16	122(2)
C9 C10	1.38(3)	C18 N3 C16	113(2)
C10 C11	1.45(3)	N1 C1 O1	127(2)
C10 C15	1.46(3)	N1 C1 C2	118(2)
C11 C12	1.43(3)	O1 C1 C2	115.5(19)
C12 C13	1.39(3)	C3 C2 C7	118(2)
C13 C14	1.37(4)	C3 C2 C1	119(2)
C14 C15	1.33(3)	C7 C2 C1	124(2)
C16 C17	1.50(4)	C4 C3 C2	122(2)

C18 C19	1.53(4)	C5 C4 C3	118(2)
		C5 C4 C8	120(2)
		C3 C4 C8	122(2)
		C6 C5 C4	124(2)
		C5 C6 C7	119(2)
		C2 C7 C6	119(2)
		N2 C9 C10	126(2)
		C9 C10 C11	123(2)
		C9 C10 C15	123(2)
		C11 C10 C15	114(2)
		O2 C11 C12	119(2)
		O2 C11 C10	120(2)
		C12 C11 C10	121(2)
		C13 C12 C11	118(2)
		C14 C13 N3	120(2)
		C14 C13 C12	123(3)
		N3 C13 C12	117(2)
		C15 C14 C13	121(3)
		C14 C15 C10	123(2)
		C17 C16 N3	109(2)
		N3 C18 C19	111(3)

Table S4b Selected bond lengths and angles of M2

Atoms	Bond length	Atoms	Bond angle
Mo O1	2.0093(14)	O2 Mo O1	149.77(6)
Mo O2	1.9286(14)	O3 Mo O1	96.89(6)
Mo O3	1.7046(15)	O3 Mo O2	103.41(7)
Mo O4	1.6945(15)	O4 Mo O1	96.35(7)
Mo O5	2.3456(14)	O4 Mo O2	99.26(7)
Mo N2	2.2269(16)	O4 Mo O3	105.99(8)
O1 C1	1.310(2)	O5 Mo O1	78.51(6)
O2 C11	1.342(2)	O5 Mo O2	82.45(6)
O5 C20	1.401(3)	O5 Mo O3	81.78(6)
N1 N2	1.401(2)	O5 Mo O4	171.28(6)
N1 C1	1.311(2)	N2 Mo O1	72.13(6)
N2 C9	1.294(2)	N2 Mo O2	80.32(6)
C1 C2	1.472(3)	N2 Mo O3	155.41(7)
C2 C3	1.396(3)	N2 Mo O4	97.21(7)
C2 C7	1.393(3)	N2 Mo O5	74.57(5)
C3 C4	1.384(3)	C1 O1 Mo	120.22(12)
C4 C5	1.384(3)	C11 O2 Mo	136.27(13)
C5 C6	1.391(3)	C20 O5 Mo	124.88(15)
C6 C7	1.391(3)	C1 N1 N2	109.62(15)

C6 C8	1.503(3)	N1 N2 Mo	115.19(11)
C9 C10	1.444(2)	C9 N2 Mo	128.85(13)
C10 C11	1.395(3)	C9 N2 N1	115.96(15)
C10 C19	1.449(3)	N1 C1 O1	122.70(17)
C11 C12	1.415(3)	C2 C1 O1	117.50(16)
C12 C13	1.363(3)	C2 C1 N1	119.78(17)
C13 C14	1.416(3)	C3 C2 C1	120.03(18)
C14 C15	1.417(3)	C7 C2 C1	120.44(17)
C14 C19	1.422(3)	C7 C2 C3	119.54(18)
C15 C16	1.367(3)	C4 C3 C2	119.2(2)
C16 C17	1.402(3)	C5 C4 C3	120.7(2)
C17 C18	1.376(3)	C6 C5 C4	121.15(19)
C18 C19	1.412(3)	C7 C6 C5	117.9(2)
		C8 C6 C5	121.3(2)
		C8 C6 C7	120.8(2)
		C6 C7 C2	121.55(19)
		C10 C9 N2	124.51(17)
		C11 C10 C9	121.12(17)
		C19 C10 C9	119.45(17)
		C19 C10 C11	119.30(17)
		C10 C11 O2	123.24(17)
		C12 C11 O2	115.77(17)
		C12 C11 C10	120.93(18)
		C13 C12 C11	120.07(18)
		C14 C13 C12	121.50(18)
		C15 C14 C13	120.68(18)
		C19 C14 C13	119.64(18)
		C19 C14 C15	119.68(19)
		C16 C15 C14	121.13(19)
		C17 C16 C15	119.2(2)
		C18 C17 C16	121.2(2)
		C19 C18 C17	120.99(19)
		C14 C19 C10	118.54(17)
		C18 C19 C10	123.67(17)
		C18 C19 C14	117.79(18)