## **Supporting Information**

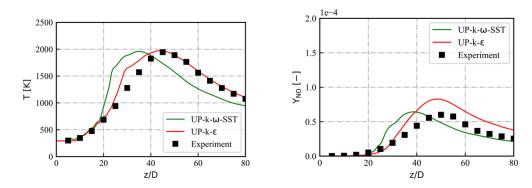
for

## Modeling of Sandia Flame D with the non-adiabatic chemistry tabulation approach: the effects of different laminar flames on $NO_X$ prediction

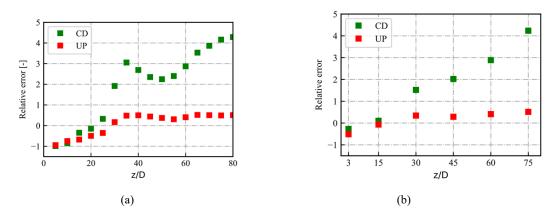
Chuanfeng Yue<sup>1,2</sup>, Jingbo Wang<sup>1,2,\*</sup>, Xiangyuan Li<sup>1,2</sup>

<sup>1</sup>College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China <sup>2</sup>Engineering Research Center of Combustion and Cooling for Aerospace Power, Ministry of Education, Sichuan University, Chengdu, 610065, P. R. China

## **Contents**


**Figure S1.** The temperature (left) and NO (right) profiles on the central axis with the UP library. Red line marks k- $\epsilon$  result, green line marks k- $\omega$ -SST result. Black dots mark experimental values.

**Figure S2.** (a) Relative error of  $Y_{NO}$  on the central axis; (b) Relative error of maximum  $Y_{NO}$  in radial profiles at six axial locations. The green square represents the CD library, the red square represents the UP library.


**Table S1.** Relative error of maximum NO mass fraction  $(Y_{NO})$  in radial profiles at six axial locations.

S1

<sup>\*</sup>Email: wangjingbo@scu.edu.cn



**Figure S1.** The temperature (left) and NO (right) profiles on the central axis with the UP library. Red line marks k- $\epsilon$  result, green line marks k- $\omega$ -SST result. Black dots mark experimental values.



**Figure S2.** (a) Relative error of  $Y_{NO}$  on the central axis; (b) Relative error of maximum  $Y_{NO}$  in radial profiles at six axial locations. The green square represents the CD library, the red square represents the UP library.

**Table S1.** Relative error of maximum NO mass fraction  $(Y_{NO})$  in radial profiles at six axial locations.

| z/D | $r/D$ for $max(Y_{NO})$ | UP-relative error | CD-relative error |
|-----|-------------------------|-------------------|-------------------|
| 3   | 0.79                    | -51%              | -27%              |
| 15  | 1.11                    | -7%               | 10%               |
| 30  | 1.67                    | 34%               | 152%              |
| 45  | 1.11                    | 29%               | 202%              |
| 60  | 0                       | 41%               | 289%              |
| 75  | 0                       | 51%               | 424%              |