Alkali halides as nucleophilic reagent source for N-directed palladium-catalysed ortho-C-H halogenation of s-tetrazines and other heteroaromatics

Ahmad Daher, Oumaima Abidi, Jean-Cyrille Hierso and Julien Roger

General Conditions 2
Optimization studies 2
Optimization studies for ortho-selective C-H iodination 2
Optimization studies for ortho-selective C-H bromination 3
Optimization studies for ortho-selective $\mathbf{C}-\mathrm{H}$ chlorination 3
Optimization studies for ortho-selective C-H acetoxylation 4
General procedures 4
General procedure for the halogenation of heteroaryl derivatives 4
General procedure for the acetoxylation 8
References 9
Copy of NMR spectrum 10

General Conditions

All reagents were purchased from commercial suppliers and used without purifications. All experiments were carried out under air using a microwave reaction vessel. Microwave heating was carried out using a CEM Discover microwave reactor. The microwave reactions were run in closed reaction vessels with magnetic stirring and with the temperature controlled via IR detection. Flash chromatography was performed on silica gel (40-63 $\mu \mathrm{m}$). The identity and purity of the products were established at the "Chemical Analysis Platform and Molecular Synthesis University of Burgundy" (PACSMUB Platform - SATT SAYENS) using high-resolution mass spectrometry, elemental analysis and multinuclear NMR. ${ }^{1} \mathrm{H}\left(500,400\right.$ or 300 MHz), ${ }^{13} \mathrm{C}(125$ or 101 MHz$),{ }^{19} \mathrm{~F}(470$ or 282 MHz) spectra were recorded on Bruker AVANCE III instruments in CDCl_{3} or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution. Chemical shifts are reported in ppm relative to $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}: 7.26\right.$ and ${ }^{13} \mathrm{C}$: 77.16) or $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left({ }^{1} \mathrm{H}: 5.32\right.$ and ${ }^{13} \mathrm{C}$: 54.00) and coupling constants J are given in Hz . High resolution mass spectra (HRMS) were obtained on a Thermo LTQ-Orbitrap XL with ESI source.

Optimization studies

Optimization studies for ortho-selective C-H iodination

Table S1: Screening reaction conditions for mono-iodination of 3,6-bis(2-fluorophenyl)-1,2,4,5-tetrazine (1). ${ }^{\text {[a] }}$

Entry	$\begin{gathered} {[\mathrm{Pd}]} \\ \text { (5 mol\%) } \end{gathered}$	Oxidant (equiv.)	$\begin{gathered} {\left[I^{\circ}\right]} \\ \text { (equiv.) } \end{gathered}$	$\begin{gathered} \text { Solvent } \\ {[0.125 \mathrm{M}]} \end{gathered}$	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Time (min)	Conv. (\%)	$\begin{gathered} \hline \text { 1a } \\ (\%) \end{gathered}$	1a' (\%)	$\begin{gathered} \hline \text { 1b } \\ \text { (\%) } \end{gathered}$
1	-	PIDA (1.2)	NaI (1.2)	HOAc	110	30	0	0	0	0
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	-	Nal (1.2)	HOAc	110	30	0	0	0	0
3	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PIDA (1.2)	-	HOAc	110	30	57	0	0	$50^{[b]}$
4	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PIDA (2.0)	NaI (2.0)	HOAc	110	30	98	63	35	0
5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PIFA (1.2)	Nal (1.2)	HOAc	110	30	38	26	12	0
6	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(1.2)$	Nal (1.2)	HOAc	110	30	0	0	0	0
7	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PIDA (1.2)	Nal (1.2)	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	110	30	0	0	0	0
8	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PIDA (1.2)	NaI (1.2)	DCE	90	30	0	0	0	0
9	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PIDA (1.2)	NaI (1.2)	PhCF_{3}	110	30	0	0	0	0
10	$\mathrm{Pd}(\mathrm{dba})_{2}$	PIDA (1.2)	NaI (1.2)	HOAc	110	30	46	43	3	0
11	$\mathrm{Pd}(\mathrm{OPiv})_{2}$	PIDA (1.2)	NaI (1.2)	HOAc	110	30	79	68	11	0
12	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PIDA (1.2)	NaI (1.2)	HOAc	110	30	86	67 (55)	19 (9)	0
13	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PIDA (1.2)	Lil (1.2)	HOAc	110	30	82	70	12	0
14	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PIDA (1.2)	KI (1.2)	HOAc	110	30	84	72 (68)	12	0
15	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PIDA (1.2)	$\mathrm{N}(\mathrm{tBu}) \mathrm{I}(1.2)$	HOAc	110	30	79	70	9	0

${ }^{[a]}$ Conditions: 3,6-bis(2-fluorophenyl)-1,2,4,5-tetrazine (1, $0.25 \mathrm{mmol}, 1$ equiv.), [Pd] (5 mol\%), [1-] (1.2-2.0 equiv.), oxidant (1.2-2.0 equiv.), solvent [0.125 M], $90-110{ }^{\circ} \mathrm{C}$, 30 min , microwave irradiations (200 Watts), under air. Conversion and selectivity based on 1 by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR analysis. Isolated yield are given under bracket. PIDA: Phenyliodine diacetate $\left[\mathrm{Phl}(\mathrm{OAc})_{2}\right.$]. PIFA: Bis(trifluoroacetoxy)iodobenzene [$\mathrm{PhI}\left(\mathrm{OCOCF}_{3}\right)_{2}$]. DCE: Dichloroethane. ${ }^{[b]}$ 7% of diacetoxylated product was observed.

Optimization studies for ortho-selective $\mathbf{C - H}$ bromination

Table S2: Screening reaction conditions for mono-bromination of 3,6-bis(2-fluorophenyl)-1,2,4,5-tetrazine (1). ${ }^{[\text {a] }}$

Entry	Oxidant (equiv.)	$[\mathrm{Br}]$ (equiv.)	Solvent $[\mathbf{0 . 1 2 5 ~ M] ~}$	\mathbf{T} $\left.{ }^{\circ} \mathrm{C}\right)$	Time (min)	Conv. (\%)	$\mathbf{1 c}$ (\%)	$\mathbf{1 c} \mathbf{c}^{\prime}$ (\%)	$\mathbf{1 b}$ (\%)
$\mathbf{1}$	PIDA (3.2)	$\mathrm{NaBr}(3.2)$	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	110	45	5	0	0	0
$\mathbf{2}$	$\mathrm{PIDA}(1.2)$	$\mathrm{NaBr}(3.2)$	HOAc	110	45	47	47	0	0
$\mathbf{3}$	PIDA (1.2)	$\mathrm{NaBr}(1.2)$	HOAc	110	30	88	$71(60)$	11	$3^{[b]}$
$\mathbf{4}$	PIDA (1.2)	$\mathrm{KBr}(1.2)$	HOAc	110	30	86	$73(60)$	$13(9)$	0

${ }^{[a]}$ Conditions: 3,6-bis(2-fluorophenyl)-1,2,4,5-tetrazine ($1,0.25 \mathrm{mmol}, 1$ equiv.), [Pd(OAc) $\left.{ }_{2}\right]$ ($5 \mathrm{~mol} \%$), [Br -] (1.2-3.2 equiv.), PIDA (1.2-3.2 equiv.), solvent [0.125 M$], 110^{\circ} \mathrm{C}, 30-45 \mathrm{~min}$, microwave irradiations (200 Watts), under air. Conversion and selectivity based on 1 by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR analysis. Isolated yield are given under bracket. PIDA: Phenyliodine diacetate $\left[\mathrm{Phl}(\mathrm{OAc})_{2}\right] .{ }^{[b]} 3 \%$ of diacetoxylated product was observed.

Optimization studies for ortho-selective C-H chlorination

Table S3: Screening reaction conditions for mono-chlorination of 3,6-bis(2-fluorophenyl)-1,2,4,5-tetrazine (1). ${ }^{[\text {a] }}$

Entry	$\left[\mathrm{Cl}^{-}\right]$ (equiv.)	Solvent [0.125 M]	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Time (min)	Conv. (\%)	1d (\%)	$\begin{aligned} & 1 \mathrm{~d}^{\prime} \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { 1b } \\ & \text { (\%) } \end{aligned}$
1	$\mathrm{NaCl}(1.2)$	HOAc	110	30	87	61	12	$10^{[b]}$
2	KCI (1.2)	HOAc	120	30	83	67	12	$6^{[c]}$
3	KCI (1.2)	HOAc	110	30	89	62 (55\%)	17 (11\%)	$8^{[c]}$

${ }^{[a]}$ Conditions: 3,6 -bis(2-fluorophenyl)-1,2,4,5-tetrazine ($1,0.25 \mathrm{mmol}, 1$ equiv.), $\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right]$ ($5 \mathrm{~mol} \%$), $[\mathrm{Cl}]$ (1.2 equiv.), PIDA (1.2 equiv.), HOAC [0.125 M$], 110^{\circ} \mathrm{C}, 30 \mathrm{~min}$, microwave irradiations (200 Watts), under air. Conversion and selectivity based on 1 by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR analysis. PIDA: Phenyliodine diacetate $\left[\mathrm{Phl}(\mathrm{OAc})_{2}\right]$. ${ }^{[b]} 4 \%$ of diacetoxylated product was observed. ${ }^{[c]} 2 \%$ of diacetoxylated product was observed.

Optimization studies for ortho-selective C-H acetoxylation

Table S4: Screening reaction conditions for mono-acetoxylation of 3,6-bis(2-fluorophenyl)-1,2,4,5-tetrazine (1). ${ }^{[\text {a] }}$

			$\xrightarrow[\begin{array}{c} \text { Additive (equiv.), } \\ \text { solvent (0.125 M), } \\ \text { T }{ }^{\circ} \mathrm{C} \text {, time } \\ (\mu \mathrm{Pd}, 200 \text { Watts) } \end{array} .]{\substack{[\mathrm{mol} / \mathrm{m}] \\ \text { Oxidant (equiv.) }}}$						
Entry	$\begin{gathered} {\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right]} \\ (\mathrm{mol}) \end{gathered}$	Oxidant (equiv.)	Additive (equiv.)	Solvent [0.125 M]	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Time (min)	Conv. (\%)	1b (\%)	1b' (\%)
1	(10)	PIDA (1.2)	-	HOAc	110	10	59	52	7
2	(5)	PIDA (1.2)	-	HOAc	110	10	57	52	5
3	(5)	PIDA (1.2)	-	HOAc	110	30	57	50	7
4	(5)	PIDA (1.2)	KOAc (1.2)	HOAc	110	30	50	50	Trace
5	(10)	PIDA (1.2)	-	HOAc	120	30	65	56	9
6	(10)	PIDA (1.2)	-	HOAc	110	30	60	54 (40)	6
7	(10)	PIDA (3.0)	-	HOAc	110	10	77	53	24
8	(10)	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(3.0)$	-	HOAc	110	10	21	21	0
9	(10)	PIDA (6.0)	-	HOAc	110	30	56	51	5
10	(10)	PIDA (3.0)	-	HOAc	120	10	100	50 (40)	50 (40)

${ }^{[a]}$ Conditions: 3,6-bis(2-fluorophenyl)-1,2,4,5-tetrazine (1, $0.25 \mathrm{mmol}, 1$ equiv.), [Pd(OAc) ${ }_{2}$ ($5-10 \mathrm{~mol} \%$), oxidant (1.26.0 equiv.), additive ($0-1.2$ equiv.), $\mathrm{HOAc}[0.125 \mathrm{M}], 110-120^{\circ} \mathrm{C}, 10-30 \mathrm{~min}$, microwave irradiations (200 Watts), under air. Conversion and selectivity based on 1 by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR analysis. PIDA: Phenyliodine diacetate [PhI(OAc) 2].

General procedures

General procedure for the halogenation of heteroaryl derivatives

As a typical experiment, in a microwave reaction vessel equipped with a magnetic stirring bar was charged with heteroaryls (1 equiv., 0.25 mmol$),\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right](5 \mathrm{~mol} \%), \mathrm{PIDA}(1.2$ equiv., 0.3 mmol$)$ and $\mathrm{KX}(1.2$ equiv., 0.3 mmol$)$ in acetic acid [0.125 M] under air. The mixture was heated at $110^{\circ} \mathrm{C}$ during the corresponding time under microwaves irradiations (200 Watts). After cooling down to room temperature, the solvent was removed under vacuum and the residue was analysed by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectroscopy to determine the conversion and selectivity of the halogenation reaction. The crude mixture was purified by silica gel column chromatography using an appropriate ratio of eluent (Dichloromethane or Ethyl Acetate/Heptane or Pentane) to afford the targeted product.

3-(2-Fluoro-6-iodophenyl)-6-(2-fluorophenyl)-1,2,4,5-tetrazine (1a) ${ }^{1}$

Isolated yield: 68% (67 mg , as a purple solid). $\mathrm{Rf}=0.51$ (Dichloromethane/Heptane: 7/3).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.46-8.40(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.30(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-108.8(1 \mathrm{~F}),-111.0(1 \mathrm{~F})$.

3-(2-Bromo-6-fluorophenyl)-6-(2-fluorophenyl)-1,2,4,5-tetrazine (1c) ${ }^{1}$

Isolated yield: 60% (52 mg , as a purple solid). $\mathrm{Rf}=0.52$ (Dichloromethane/Heptane: $7 / 3$).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.42(\mathrm{td}, J=7.6$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{dt}, J=8.2$ and 1.0 Hz , 1 H), 7.48 (td, $J=8.3$ and $5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (td, $J=7.6$ and $1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36 (ddd, $J=10.9,8.4$ and $1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30 (td, $J=8.9$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-110.0(1 \mathrm{~F}),-111.0(1 \mathrm{~F})$.

3-(2-Chloro-6-fluorophenyl)-6-(2-fluorophenyl)-1,2,4,5-tetrazine (1d) ${ }^{1}$
Isolated yield: 55% (42 mg , as a purple solid). $\mathrm{Rf}=0.55$ (Dichloromethane/Heptane: $7 / 3$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.42(\mathrm{td}, J=7.6$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{td}, J=8.3$ and 5.8 Hz , $1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-111.1(1 \mathrm{~F}),-111.1(1 \mathrm{~F})$.

3-(2-lodophenyl)-6-phenyl-1,2,4,5-tetrazine (2a) ${ }^{1}$

Isolated yield: 61% (55 mg , as a purple solid). $\mathrm{Rf}=0.44$ (Dichloromethane/Heptane: 1/1).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.73-8.71(\mathrm{~m}, 2 \mathrm{H}), 8.12(\mathrm{dd}, J=8.0$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=7.7$ and 1.6 Hz , 1H), 7.70-7.58 (m, 4H), 7.31-7.26 (m, 1H).

3-(2-Bromophenyl)-6-phenyl-1,2,4,5-tetrazine (2c) ${ }^{2}$

Isolated yield: 48% (37 mg , as a purple solid). $\mathrm{Rf}=0.34$ (Dichloromethane/Heptane: 1/1).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.72-8.70(\mathrm{~m}, 2 \mathrm{H}), 8.02(\mathrm{dd}, J=7.7$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=8.0$ and 1.1 Hz , $1 \mathrm{H}), 7.69-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.57(\mathrm{td}, J=7.6$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (td, $J=7.8$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H})$.

3-(2-Chlorophenyl)-6-phenyl-1,2,4,5-tetrazine (2d) ${ }^{2}$

Isolated yield: 35% (23 mg , as a purple solid). $\mathrm{Rf}=0.45$ (Dichloromethane/Heptane: 1/1).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta(\mathrm{ppm})=8.69-8.67(\mathrm{~m}, 2 \mathrm{H}), 8.05(\mathrm{dd}, J=7.4$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.61-7.54$ ($\mathrm{m}, 2 \mathrm{H}$).

3-(4-Fluoro-6-lodophenyl)-6-(4-fluorophenyl)-1,2,4,5-tetrazine (3a)

Isolated yield: 51% (50 mg , as a purple solid). $\mathrm{Rf}=0.36$ (Dichloromethane/Heptane: 1/1).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.74-8.71(\mathrm{~m}, 2 \mathrm{H}), 8.03(\mathrm{dd}, J=8.7$ and $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=8.0$ and 2.6 Hz , 1H), 7.35-7.30 (m, 3H).
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-105.3(1 \mathrm{~F}),-107.3(1 \mathrm{~F})$.
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta(\mathrm{ppm})=167.6(\mathrm{~d}, J=254.1 \mathrm{~Hz}), 167.1,164.9(\mathrm{~d}, J=256.7 \mathrm{~Hz}), 163.0,134.0(\mathrm{~d}, J=3.5 \mathrm{~Hz})$, $133.4(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 131.3(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=24.3 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 117.2(\mathrm{~d}, J=22.3 \mathrm{~Hz}), 116.7(\mathrm{~d}, J=$ 21.5 Hz), $95.8(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz})$.

HRMS + p ESI (m/z) [$\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{IN}_{4}$: 396.97562; Found: 396.97519.

3-(4-Fluoro-6-bromophenyl)-6-(4-fluorophenyl)-1,2,4,5-tetrazine (3c)

Isolated yield: 50% (43 mg , as a purple solid). $\mathrm{Rf}=0.36$ (Dichloromethane/Heptane: 2/3).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.74-8.71(\mathrm{~m}, 2 \mathrm{H}), 8.06(\mathrm{dd}, J=8.7$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.2$ and 2.5 Hz , 1H), 7.35-7.27 (m, 3H).
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-105.3(1 \mathrm{~F}),-106.3(1 \mathrm{~F})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=167.2(\mathrm{~d}, J=255.2 \mathrm{~Hz}), 165.8,165.1(\mathrm{~d}, J=256.9 \mathrm{~Hz}), 162.5,133.7(\mathrm{~d}, J=9.2 \mathrm{~Hz})$, $130.9(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 130.0(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 127.7(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 123.3(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 122.2(\mathrm{~d}, J=24.8 \mathrm{~Hz}), 116.9(\mathrm{~d}, J=$ 22.1 Hz), 115.7 ($\mathrm{d}, \mathrm{J}=21.5 \mathrm{~Hz}$).

HRMS + p ESI (m/z) [$\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{BrF}_{2} \mathrm{~N}_{4}$: 348.98949; Found: 348.98915.

3-(4-Fluoro-6-chlorophenyl)-6-(4-fluorophenyl)-1,2,4,5-tetrazine (3d)

Isolated yield: 45% (34 mg , as a purple solid). $\mathrm{Rf}=0.33$ (Dichloromethane/Heptane: $2 / 3$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.74-8.70(\mathrm{~m}, 2 \mathrm{H}), 8.10(\mathrm{dd}, J=8.7$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.4$ and 2.5 Hz , 1H), 7.34-7.30 (m, 2H), 7.28-7.23 (m, 1H).
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-105.3(1 \mathrm{~F}),-106.0(1 \mathrm{~F})$.
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=167.2(\mathrm{~d}, \mathrm{~J}=255.0 \mathrm{~Hz}), 165.3(\mathrm{~d}, \mathrm{~J}=256.2 \mathrm{~Hz}), 165.1,162.5,135.3(\mathrm{~d}, J=10.7 \mathrm{~Hz})$, 133.8 (d, $J=9.6 \mathrm{~Hz}$), 130.9 ($\mathrm{d}, J=9.2 \mathrm{~Hz}$), 128.1 (d, $J=3.7 \mathrm{~Hz}$), 127.7 ($\mathrm{d}, J=3.2 \mathrm{~Hz}$), $119.0(\mathrm{~d}, J=25.0 \mathrm{~Hz}), 116.9(\mathrm{~d}, J=$ $22.2 \mathrm{~Hz}), 115.2(\mathrm{~d}, J=21.6 \mathrm{~Hz})$.

3-(3-Fluoro-6-iodophenyl)-6-(3-fluorophenyl)-1,2,4,5-tetrazine (4a)
Isolated yield: 35% (35 mg , as a purple solid). $\mathrm{Rf}=0.2$ (Dichloromethane/Pentane: 3/7).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.52(\mathrm{ddd}, J=7.8,1.6$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{ddd}, J=9.7,2.6$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08$ (dd, $J=8.8$ and $5.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.78(\mathrm{dd}, J=8.9$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{td}, J=8.1$ and $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ (tdd, $J=8.3,2.7$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.07 (ddd, $J=8.7,7.8$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-110.7$ (1F), -112.4 (1F).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=166.8(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 164.7(\mathrm{~d}, J=247.7 \mathrm{~Hz}), 164.3(\mathrm{~d}, J=250.1 \mathrm{~Hz}), 162.7(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}), 142.8(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 138.5(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 133.7(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 124.4(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 120.5$ ($\mathrm{d}, J=21.3 \mathrm{~Hz}$), $120.2(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 119.2(\mathrm{~d}, J=24.3 \mathrm{~Hz}), 115.6(\mathrm{~d}, J=24.0 \mathrm{~Hz}), 88.7(\mathrm{~d}, J=3.7 \mathrm{~Hz})$.
HRMS + p ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{IN}_{4}$: 396.97562; Found: 396.97516.

3-(3-Fluoro-6-bromophenyl)-6-(3-fluorophenyl)-1,2,4,5-tetrazine (4c)

Isolated yield: 35% (30 mg , as a purple solid). $\mathrm{Rf}=0.35$ (Dichloromethane/Pentane: 3/7).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.52(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{td}, J=8.0$ and $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{td}, J=8.3$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=8.2$ and $3.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-110.7$ (1F), -113.1 (1F).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm})=166.5(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 164.9(\mathrm{~d}, J=246.8 \mathrm{~Hz}), 163.5(\mathrm{~d}, J=248.6 \mathrm{~Hz}), 163.2(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}), 136.6(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 135.6(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 134.2(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 124.7(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 120.7$ (d, J=21.5 Hz), 120.5 (d, J=22.2 Hz), 119.8 (d, J=25.1 Hz), 117.2 (d, J=3.4 Hz), 115.7 (d, J=24.0 Hz).
HRMS + p ESI (m/z) [M+H] calcd for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{BrF}_{2} \mathrm{~N}_{4}$: 348.98949; Found: 348.98911.

3-(3-Fluoro-6-chlorophenyl)-6-(3-fluorophenyl)-1,2,4,5-tetrazine (4d)

Isolated yield: 28% (21 mg , as a purple solid). $\mathrm{Rf}=0.4$ (Dichloromethane/Pentane: 3/7).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{dt}, J=9.6$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=8.5$ and 3.1 $\mathrm{Hz}, 1 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{td}, J=8.0$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-110.7(1 \mathrm{~F}),-113.6$ (1F).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm})=165.8(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 164.9(\mathrm{~d}, J=254.4 \mathrm{~Hz}), 163.2(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 162.9(\mathrm{~d}, J=$ $255.6 \mathrm{~Hz}), 134.2(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 133.6(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 133.4(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 129.3(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 124.7$ ($\mathrm{d}, J=3.0 \mathrm{~Hz}$), $120.7(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 120.4(\mathrm{~d}, J=22.8 \mathrm{~Hz}), 119.5(\mathrm{~d}, J=25.3 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=24.1 \mathrm{~Hz})$.
HRMS + p ESI (m/z) [$\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{ClF}_{2} \mathrm{~N}_{4}$: 305.04001; Found: 305.03989.

1-(2-lodophenyl)-2-phenyl-diazene (5a) ${ }^{3}$

Isolated yield: 39\% (46 mg , as an orange solid). $\mathrm{Rf}=0.4$ (Dichloromethane/Heptane: 2/3).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.04(\mathrm{dd}, J=7.9$ and $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{dd}, J=8.0 \mathrm{and} 1.6 \mathrm{~Hz}$, 1H), 7.57-7.50 (m, 3H), 7.45-7.41 (m, 1H), 7.19-7.15 (m, 1H).

1-(2-Bromophenyl)-2-phenyl-diazene (5c) ${ }^{3}$

Isolated yield: 60% (39 mg , as an orange solid). $\mathrm{Rf}=0.4$ (Dichloromethane/Heptane: 2/3).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.99(\mathrm{dd}, J=8.1$ and $1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{dd}, J=7.9$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=8.0$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{td}, J=7.6$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{td}, J=7.5$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H})$.

2-(2-lodo-6-methylphenyl)-pyrimidine (6a) ${ }^{4}$

Isolated yield: 65% (48 mg , as a colourless oil). $\mathrm{Rf}=0.3$ (Dichloromethane/Heptane: 3/7).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.90(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{dd}, J=7.9$ and $0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$.

2-(2-Bromo-6-methylphenyl)-pyrimidine (6c) ${ }^{5}$

Isolated yield: 61% (38 mg , as a colourless oil). $\mathrm{Rf}=0.3$ (Dichloromethane/Heptane: 1/1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.90(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=7.7$ and $0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H})$.

9-lodo-2-methyl-napthtol[1,2-d]thiazole (7a)

Isolated yield: 56% (45 mg , as a white solid). $\mathrm{Rf}=0.33$ (Ethyl acetate/Heptane: 1.5/8.5).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=8.3$ and $5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.16(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=163.0,147.0,141.9,134.9,133.3,129.4,128.6,126.5,126.1,119.7,88.7,20.5$. HRMS + p ESI (m/z) [M+H] $]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{9}$ INS: 325.94949; Found: 325.94913.

9-Chloro-2-methyl-napthtol[1,2-d]thiazole (7d)

Isolated yield: 53\% (31 mg , as a yellow solid). $\mathrm{Rf}=0.37$ (Ethyl acetate/Heptane: 1.5/8.5).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.93(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=8.1$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.74(\mathrm{dd}, J=7.5$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=164.3,147.6,135.5,134.4,130.3,129.7,127.8,126.1,125.8,125.7,120.0,20.7$. HRMS + p ESI (m/z) [M+H] ${ }^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ClNS}$ 234.01387; Found: 234.01377.

1-(2-lodophenyl)-4-nitro-1H-pyrazole (8a)

Isolated yield: 62% (49 mg , as a white solid). $\mathrm{Rf}=0.25$ (Dichloromethane/Heptane: 3/7).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) : $\delta(\mathrm{ppm})=8.45(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=8.0$ and $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=$ 7.6 and $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (dd, $J=7.9$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.28(\mathrm{t}, J=8.0$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm})=142.4,140.9,140.5,136.9,132.1,131.0,130.0,128.4,94.3$.
HRMS + p ESI (m/z) [$\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$: 315.95775; Found: 315.95757.

1-(2-lodophenyl)-4-bromo-1H-pyrazole (9a)

Isolated yield: 80% (76 mg , as a white solid). $\mathrm{Rf}=0.25$ (Ethyl acetate/Heptane: 1/9).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.86(\mathrm{dd}, J=8.0$ and $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=8.1$ and 1.3 $\mathrm{Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=141.8,140.5,138.3,133.6,132.1,131.2,130.4,98.5,95.0$.
HRMS + p ESI (m/z) [M+H] $]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{BrClIN}_{2}$: 382.84421; Found: 382.84384.

1-(2-bromo-6-iodophenyl)-4-bromo-1H-pyrazole (10a)

Isolated yield: 70% (75 mg , as a white solid). $\mathrm{Rf}=0.4$ (Dichloromethane/Heptane: 1/9).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.90(\mathrm{dd}, J=8.0$ and $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=8.1 \mathrm{and} 1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=141.8,141.7,139.0,133.6,132.4,131.0,122.9,98.4,95.0$.
HRMS + p ESI (m/z) [M+H] ${ }^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{IN}_{2}: 426.79369$. Found 426.79311.

4-Bromo-1-[(2-iodo-6-methylphenyl)methyl]-1H-pyrazole (11a)

Isolated yield: 51% (48 mg , as a white solid). $\mathrm{Rf}=0.37$ (Ethyl acetate/Heptane: 1.5/8.5).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=7.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, \mathrm{J}$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.5(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=140.4,139.8,138.2,135.6,131.4,130.8,129.0,103.0,93.2,59.0,20.9$.
HRMS + p ESI (m/z) [M+H] calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrIN}_{2}: 376.91448$. Found: 376.91405.

3-(2-Bromophenylmethyl)-6-(phenylmethyl)-1,2,4,5-tetrazine (12c)

Isolated yield: 54% (46 mg , as a purple solid). $\mathrm{Rf}=0.35$ (Ethyl acetate/Heptane: 1/9).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.58(\mathrm{dd}, J=8.0$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.25$ $(\mathrm{m}, 1 \mathrm{H}), 7.16(\mathrm{td}, \mathrm{J}=7.7$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=169.2,168.7,135.9,135.6,133.2,132.0,129.4,129.3,129.0,127.9,127.5,125.1$, 41.4, 41.3.

HRMS +p ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrN} 4$: 341.03964; Found: 341.03923.

2-(2,4-Difluorophenyl)-6-bromo-pyridine (13c)

Isolated yield: 51% (34 mg , as a colourless oil). $\mathrm{Rf}=0.35$ (Ethyl acetate/Heptane: 3/7).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.75(\mathrm{dd}, J=4.8$ and $0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{td}, J=7.7$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.33(\mathrm{~m}$, $2 \mathrm{H}), 7.26(\mathrm{dt}, J=8.0$ and $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{td}, J=8.9$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-107.7(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{~F}),-108.6(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{~F})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=163.4(\mathrm{dd}, J=252.9$ and 13.4 Hz), 161.7 (dd, $J=252.5$ and 13.1 Hz), $152.9,149.8$, $136.5,126.8(\mathrm{dd}, J=18.7$ and 4.4 Hz$), 125.8,124.1$ (dd, $J=11.7$ and 5.4 Hz), $123.3,116.6(\mathrm{dd}, J=24.3$ and 3.9 Hz), 104.1 (dd, $J=26.8$ and 25.1 Hz).

HRMS +p ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{BrF}_{2} \mathrm{~N}$: 269.97244; Found: 269.97211.

2-(2,4-Difluorophenyl)-6-chloro-pyridine (13d)

Isolated yield: 70% (39 mg , as a colourless oil). Rf = 0.3 (Ethyl acetate/Heptane: 3/7).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.75(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{td}, J=7.7$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=7.8$ and 1.0 $\mathrm{Hz}, 1 \mathrm{H}$), 7.34 (ddd, $J=7.6,4.9$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.08(\mathrm{dt}, J=8.3,2.4,1 \mathrm{H}), 6.87(\mathrm{td}, J=8.9$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($470 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm})=-109.4(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{~F}),-109.5(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{~F})$.
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=163.5(\mathrm{dd}, J=252.1$ and 14.4 Hz$), 162.2(\mathrm{dd}, J=249.2$ and 11.17 Hz$), 151.5,149.8$, $136.5,135.3(\mathrm{dd}, J=12.7$ and 6.6 Hz$), 125.9,125.0(\mathrm{dd}, J=19.0$ and 4.2 Hz$), 123.3,113.6(\mathrm{dd}, J=24.7$ and 4.0 Hz$)$, 103.6 (dd, $J=26.8$ and 25.2 Hz).

HRMS +p ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{~F}_{2} \mathrm{NCl}$: 226.02296. Found: 226.02279.

1-(2-Bromophenyl)-4-chloro-1H-pyrazole (15)

Isolated yield: 46% (29 mg , as a white solid). $\mathrm{Rf}=0.35$ (Ethyl acetate/Heptane: 1.5/8.5).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.82(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=8.0$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=7.9$ and 1.8 $\mathrm{Hz}, 1 \mathrm{H}), 7.43(\mathrm{td}, J=7.6$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{td}, J=7.8$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H})$.

1-(2-Bromo-5-iodophenyl)-4-chloro-1H-pyrazole (16)

Isolated yield: 90% (86 mg , as a white solid). $\mathrm{Rf}=0.37$ (Ethyl acetate/Heptane: 1.5/8.5).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.86(\mathrm{dd}, J=8.0$ and $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=8.1$ and 1.3 $\mathrm{Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=141.8,140.5,138.3,133.6,132.1,131.2,130.4,98.5,95.0$.
HRMS +p ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{6}$ BrClIN 2 : 382.84421; Found: 382.84380.

General procedure for the acetoxylation

As a typical experiment, in a microwave reaction vessel equipped with a magnetic stirring bar was charged with 3,6-bis(2-fluorophenyl)-1,2,4,5-tetrazine (1 equiv., 0.25 mmol), $\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right]$ ($5 \mathrm{~mol} \%$), and PIDA (1,2 equiv., 0.3 mmol) in acetic acid $[0.125 \mathrm{M}]$ under air. The mixture was heated at $110^{\circ} \mathrm{C}$ during 30 min under microwaves irradiations (200 Watts). After cooling down at room temperature, the solvent was removed in vacuum and the residue was analysed by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR to determine the conversion and the selectivity of the acetoxylation reaction. The crude mixture was purified by silica gel column chromatography using an appropriate ratio of eluent (Dichloromethane/Heptane) to afford the desired product.

3-(2-Fluoro-6-acetylphenyl)-6-(2-fluorophenyl)-1,2,4,5-tetrazine (1b)

Isolated yield: 40% (33 mg , as a purple solid). $\mathrm{Rf}=0.3$ (Dichloromethane/Heptane: 3/1).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm})=8.36(\mathrm{td}, J=7.7$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{td}, J=7.8$ and 0.9 Hz , $1 \mathrm{H}), 7.37(\mathrm{dd}, J=11.0$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(470 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta(\mathrm{ppm})=-112.7$ (1F), -113.8 (1F).
${ }^{13} \mathrm{C}$ NMR (125 MHz, CD ${ }_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm})=169.5,164.0(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 162.2(\mathrm{~d}, J=259.3 \mathrm{~Hz}), 162.8(\mathrm{~d}, J=255.7 \mathrm{~Hz}), 162.2$
 $121.0(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 120,5(\mathrm{~d}, J=23.6 \mathrm{~Hz}), 118.0(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 116.4(\mathrm{~d}, J=14.9 \mathrm{~Hz}), 114.8(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 21.0$.
HRMS + p ESI (m/z) [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}$: 351.06640; Found: 351.06613.

3-(2-Fluoro-6-acetylphenyl)-6-(2-fluorophenyl)-1,2,4,5-tetrazine (1b')

Isolated yield: 40% (39 mg , as a purple solid). $\mathrm{Rf}=0.20$ (Dichloromethane/Heptane: 3/1).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm})=7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($470 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm})=-113.8(2 \mathrm{~F})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm})=169.4,162.8(\mathrm{~d}, J=255.9 \mathrm{~Hz}), 162.4(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 150.7(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 133.9$ (d, $J=10.3 \mathrm{~Hz}$), 120.5 ($\mathrm{d}, \mathrm{J}=3.5 \mathrm{~Hz}$), 116.2 ($\mathrm{d}, J=14.8 \mathrm{~Hz}$), 114.8 ($\mathrm{d}, J=21.4 \mathrm{~Hz}$), 21.0.
HRMS + p ESI (m/z) [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Na}$: 409.07188; Found: 409.07130.

References

1. C. D. Mboyi, C. Testa, S. Reeb, S. Genc, H. Cattey, P. Fleurat-Lessard, J. Roger, J.-C. Hierso, ACS Catal., 2017, 7, 84938501.
2. C. Testa, E. Gigot, S. Genc, R. Decreau, J. Roger, J.-C. Hierso, Angew. Chem. Int. Ed., 2016, 55, 5555-5559.
3. X. T. Maa, S. K. Tian, Adv. Synth. Catal., 2013, 355, 337-340.
4. F. Kakiuchi, PCT Int. Appl. (2010), WO 2010104028 A1 20100916.
5. B. Song, X. Zheng, J. Mo, B. Xu, B. Xu, Adv. Synth. Catal., 2013, 352, 329-335.

Copy of NMR spectrum

3－（2－Fluoro－6－iodophenyl）－6－（2－fluorophenyl）－1，2，4，5－tetrazine（1a）
1H NMR， $300 \mathrm{MHz}, \mathrm{CDCl} 3$ 为
$\underbrace{\infty}$

19F NMR， 282 MHz，CDCl3

3-(2-Bromo-6-fluorophenyl)-6-(2-fluorophenyl)-1,2,4,5-tetrazine (1c)

1H NMR, 500 MHz, CDCl3

五

													ठ-											
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	.
												(ppm												

3-(2-Bromophenyl)-6-phenyl-1,2,4,5-tetrazine (2c)

1 H NMR, $500 \mathrm{MHz}, \mathrm{CDCl} 3$

3-(2-Chlorophenyl)-6-phenyl-1,2,4,5-tetrazine (2d)

1H NMI忽

3-(4-Fluoro-6-lodophenyl)-6-(4-fluorophenyl)-1,2,4,5-tetrazine (3a)

1H NMR, $500 \mathrm{MHz}, \mathrm{CDCl} 3$

$19 F$ NMR, $470 \mathrm{MHz}, \mathrm{CDCl} 3$

- ले

$\stackrel{\text { N̦ }}{\underset{\sim}{\mathrm{O}}}$	+

3-(4-Fluoro-6-chlorophenyl)-6-(4-fluorophenyl)-1,2,4,5-tetrazine (3d)
1 H NMR, $400 \mathrm{MHz}, \mathrm{CDCl} 3$

\qquad

3-(3-Fluoro-6-bromophenyl)-6-(3-fluorophenyl)-1,2,4,5-tetrazine (4c)
1H NMR, 500 MHz , CDCl3

19F NMR, $470 \mathrm{MHz}, \mathrm{CDCl} 3$

1-(2-lodophenyl)-2-phenyl-diazene (5a)

1H NMR, 400 MHz C C

1-(2-Bromophenyl)-2-phenyl-diazene (5c)

2-(2-lodo-6-methylphenyl)-pyrimidine (6a)

1H NMR, 400 MHz , CDCl3
$\underbrace{\text { go }}$ 内
$\stackrel{N}{\underset{N}{N}}$

2-(2-Bromo-6-methylphenyl)-pyrimidine (6c)

1H NMR, 400 MHz , CDCl3

9-lodo-2-methyl-napthtol[1,2-d]thiazole (7a)

9-Chloro-2-methyl-napthtol[1,2-d]thiazole (7d)

M

1-(2-lodophenyl)-4-nitro-1H-pyrazole (8a)

F	Nิ	-7	9	$\stackrel{\infty}{\circ}$	N
ボ	O ${ }_{\text {¢ }}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\rightharpoonup}{m}$	$\stackrel{\circ}{\text { ¢ }}$

1-(2-chloro-6-lodophenyl)-4-bromo-1H-pyrazole (9a)

1H NMR, 400 MHz , CDCl3

$\xrightarrow{\text { anconcoin }}$

1－（2－Bromo－6－iodophenyl）－4－bromo－1H－pyrazole（10a）
1H NMR， 400 MHz ，CDCl

ヘヘヘヘヘヘべヘべへ

$\stackrel{\leftrightarrow}{\infty}$

4-Bromo-1-[(2-methyl-6-iodophenyl)methyl]-1H-pyrazole (11a)

No N N N N

3-(2-BromophenyImethyl)-6-(phenyImethyl)-1,2,4,5-tetrazine (12c)
1H NMR, 400 MHz C

2-(2,4-Difluorophenyl)-6-bromo-pyridine (13c)

1 H NMR, $500 \mathrm{MHz}, \mathrm{CDCl} 3$

\qquad

19F NMR, 470 MHz , CD2Cl2

\qquad

1-(2-Bromophenyl)-4-chloro-1H-pyrazole (15)

1 H NMR, $400 \mathrm{MHz}, \mathrm{CDCl} 3$

1－（2－Bromo－5－iodophenyl）－4－chloro－1H－pyrazole（16）

$1 \mathrm{HMR}, 500 \mathrm{MHz}$ ，CDCl3
 ヘヘNべべべべべべ

がす	ก	응
$\dot{\sim}$	$\underset{\sim}{\mathrm{m}}$	$\stackrel{\sim}{\sim}$
$1<1$	｜ 1	

$$
\begin{array}{ll}
\infty & \text { in } \\
\underset{\sim}{\infty} \\
\underset{\mid}{-} & \infty \\
\infty & \mid
\end{array}
$$

3-(2-Fluoro-6-acetylphenyl)-6-(2-fluorophenyl)-1,2,4,5-tetrazine (1b)

1H NMR, $500 \mathrm{MHz}, \mathrm{CD} 2 \mathrm{Cl} 2$

19F NMR, $470 \mathrm{MHz}, \mathrm{CD} 2 \mathrm{Cl} 2$

\qquad

3,6-bis(2-Fluoro-6-acetylphenyl)-1,2,4,5-tetrazine (1b')

