# The *N*-Formamide as carbonyl precursor in the catalytic synthesis of Passerini adducts under aqua and mechanochemical conditions.

Sodeeq Aderotimi Salami, Vincent J. Smith, Rui W.M. Krause

Rhodes University, Grahamstown, Makhanda, 6139 South Africa.

E-Mails: sodeeqaderotimi@gmail.com (S. A.); v.smith@ru.ac.za (V.S); r.krause@ru.ac.za (R.W.M.K)

\* Correspondence: sodeeqaderotimi@gmail.com; Tel.: +27 83 302 3511 (S.A.S.).

## **Table of Contents**

## Page

| 1.   | Materials and methods                                                                                       | S2           |
|------|-------------------------------------------------------------------------------------------------------------|--------------|
| 1.1. | Preparation of Sulfuric Acid Adsorbed on Silica Gel (SiO <sub>2</sub> -H <sub>2</sub> SO <sub>4</sub> )     | S2           |
| 1.2. | General Experimental Procedures for the Aqua Synthesis of Passerini adducts (4a-s) is presence of catalyst. | in the<br>S2 |
| 1.3. | General Procedure for the Mechanochemical Synthesis of Passerini adducts (4a-b, 4f, 4<br>4p).               | j, 4n,<br>S2 |
| 1.4. | General Procedure for the Mechanochemical Synthesis of Passerini adducts (4c-e, 4g-i, m, 4o, 4s).           | 4k-<br>S3    |
| 2.   | Spectral data of synthesized compounds                                                                      | S11          |

#### Materials and Methods.

Mechanochemical experiments were carried out in an in-house modified Makita (Jigsaw) ball mill that was equipped with (reactor diameter: 2.0 cm; height: 2.0 cm; volume of reactor: 13.2 mL). All reactors are stainless steel and equipped with stainless steel balls (diameter: 6 mm; mass: 0.90 g;). A FT-IR-Eco ATR Bruker Alpha II Spectrometer was used for the FT-IR analysis. The IR spectra were obtained by the attenuated total reflection (ATR) method. For each experiment, 16 scans were performed in the frequency range from 650 to 4000 cm<sup>-1</sup>. Melting points of all the compounds were determined using a Koffler hot-stage apparatus and are uncorrected. NMR spectra were recorded on a Bruker Advance III 400 spectrometer using CDCl<sub>3</sub> or DMSO-d<sub>6</sub> as a solvent with tetramethyl silane used as internal standard. LC-MS/MS data was recorded on a Bruker Compact quadrupole time of flight (QToF) mass spectrometer. Raw mass spectrometry data were processed using MZmine software (version 2.38). Solvents and chemicals used were of analytical grade, which were purchased from Sigma Aldrich and used without further purification. The purity determination of the starting materials and reaction monitoring was performed by thin-layer chromatography (TLC) on Merck silica gel G F254plates.

#### Preparation of Sulfuric Acid Adsorbed on Silica Gel (SiO<sub>2</sub>-H<sub>2</sub>SO<sub>4</sub>)

This has been reported previously. [38] In short, to a suspension of silica gel (29.5 g, 230–400 mesh size) in EtOAc (60 mL),  $H_2SO_4$  (1.5 g, 15.5 mmol, 0.8 mL of a 98% aq. solution of  $H_2SO_4$ ) was added and the mixture was stirred magnetically for 30 min at room temperature. EtOAc was removed under reduced pressure (rotary evaporator) and the residue was heated at 100 °C for 72 h under vacuum to afford SiO<sub>2</sub>-H<sub>2</sub>SO<sub>4</sub> as a free-flowing powder.

# General Experimental Procedures for the Aqua Synthesis of Passerini adducts (4a-s) in the presence of catalyst.

A mixture of benzoic acid (1a, 1 mmol) 1-naphthylisocyanides (2a, 1 mmol), and 4-formamido pyridine (3a, 1 mmol) was vigorously stirred in 2 mL water at room temperature for 10 minutes in the presence of 0.02g of SiO<sub>2</sub>-H<sub>2</sub>SO<sub>4</sub>. Upon completion, the organic layer was separated, and the combined organic phases were concentrated under reduced pressure and the residue was purify by column chromatography using DCM/Hexane (3: 1) as eluent to afford the desired products. Typical yields range from 83 to 96%. All other products (**a-s**) were obtained by similar approach.

#### General Procedure for the Mechanochemical Synthesis of Passerini adducts (4a-b, 4f, 4j, 4n, 4p).

**Experiment A.** A mixture of benzoic acid (1a, 1 mmol) 1-naphthylisocyanides (2a, 1 mmol), and 4-formamido pyridine (3a, 1 mmol) and additive ( $SiO_2$ -H<sub>2</sub>SO<sub>4</sub> 0.03g) was milled in a 13.2 mL stainless

steel milling vessel contained two balls of the same material (diameter: 6 mm; mass: 0.90 g) at 25 Hz for 20 min. After the milling was complete, the content in the milling vessel was transferred into a beaker using a small amount of organic solvent (DCM). Then, purification was done by column chromatography to afford the corresponding Passerini adducts in high to excellent yield.

# General Procedure for the Mechanochemical Synthesis of Passerini adducts (4c-e, 4g-i, 4k-m, 4o, 4s).

**Experiment B.** A mixture of benzoic acid (1a, 1 mmol) 1-naphthylisocyanides (2a, 1 mmol), and 2-formamidoanthracene-9,10-dione (3o, 1 mmol) and additive (water 75  $\mu$ L) was milled in a 13.2 mL stainless steel milling vessel contained two balls of the same material (diameter: 6 mm; mass: 0.90 g) at 25 Hz for 30 min. After the milling was complete, the content in the milling vessel was transferred into a beaker using a small amount of organic solvent (DCM). Then, purification was done by column chromatography to afford the corresponding oxindole derivatives in high yield.

{[(naphthalen-1-yl)carbamoyl](pyridin-4-yl)methyl}amino benzoate white solid (Yield: Met A 95%, Met B, 97%); m.p. 128 °C. IR (NaCl)  $v(\text{cm}^{-1})$  3324 (NH), 1730 (CO) ester, and 1643 (CO) amide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.22 (d, J = 9.9 Hz, 1H, NH-amide), 8.48 (d, J = 10.9 Hz, 1H, NH-ester), 8.00 (t, J = 9.6 Hz, 3H, Ar-H), 7.71 (d, J = 7.3 Hz, 1H, Ar-H), 7.63 (d, J = 8.2 Hz, 1H, Ar-H), 7.50 (d, J = 7.2 Hz, 1H, Ar-H), 7.43 (td, J = 11.8, 3.8 Hz, 2H, Ar-H), 7.31 (t, J = 7.7 Hz, 2H, Ar-H), 7.26 (d, J = 7.9 Hz, 1H, Ar-H), 7.14 (d, J = 7.3 Hz, 1H, Ar-H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.08 (CO-ester), 166.14 (CO-amide), 134.28, 133.76, 132.27, 129.90, 128.53, 128.08, 127.97, 127.29, 127.16, 126.91, 126.37, 125.52, 124.98, 122.92, 121.74, 120.81, 118.80. HR-MS (ESI): [M+H<sup>+</sup>] calcd for C<sub>24</sub>H<sub>19</sub>N<sub>3</sub>O<sub>3</sub>: 398.1447, found: 398.1530.

{[(naphthalen-1-yl)carbamoyl](pyridin-2-yl)methyl}amino benzoate white solid (Yield: Met A 87%, Met B, 90%); m.p. 142 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.18 (d, *J* = 7.4 Hz, 1H, NH-amide), 8.51 (d, *J* = 10.9 Hz, 1H, NH-ester), 8.06 (d, *J* = 8.4 Hz, 1H, Ar-H), 8.03 (t, *J* = 8.7 Hz, 2H, Ar-H), 7.76 (d, *J* = 8.3 Hz, 1H, Ar-H), 7.67 (d, *J* = 8.3 Hz, 1H, Ar-H), 7.55 (d, *J* = 7.1 Hz, 1H, Ar-H), 7.51 – 7.41 (m, 1H, Ar-H), 7.41 – 7.26 (m, 2H, Ar-H), 7.23 – 7.09 (m, 1H, Ar-H), 4.80 (s, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.26 (CO-ester), 166.09 (CO-amide), 134.28, 133.78, 132.16, 130.24, 129.81, 129.54, 128.52, 128.08, 127.98, 127.73, 127.55, 127.17, 126.70, 126.19, 125.51, 124.98, 124.64, 122.94, 121.71, 118.78. HR-MS (ESI): [M+H<sup>+</sup>] calcd for C<sub>24</sub>H<sub>19</sub>N<sub>3</sub>O<sub>3</sub>: 398.1450, found: 398.2406.

{[(naphthalen-1-yl)carbamoyl](5-sulfanyl-1H-1,2,3-triazol-4-yl)methyl}amino benzoate white solid (Yield: Met A 93%, Met B, 82%); m.p. 136 °C. IR (NaCl)  $v(cm^{-1})$  3330 (NH), 1660 (CO) ester, and 1628 (CO) amide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.32 (s, 1H, NH-amide), 10.42 (d, J = 4.4 Hz, 1H, NH-ester), 9.60 (d, J = 8.5 Hz, 1H, Ar-H), 9.51 (d, J = 8.4 Hz, 1H, Ar-H), 9.25 (d, J = 4.4 Hz, 1H, Ar-H), 9.19 (t, J = 7.6 Hz, 1H, Ar-H), 9.02 (t, J = 7.6 Hz, 1H, Ar-H), 8.13 (s, 1H, SH), 7.91 (d, J = 4.5 Hz, 1H, Ar-H), 7.35 (d, J = 2.3 Hz, 1H, Ar-H), 4.87 (s, 5H, Het-H), 4.67

(d, J = 5.2 Hz, 1H, Het-H), 4.00 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl3)  $\delta$  155.70, (CO-ester), 154.53, (CO-amide), 152.78, 146.47, 138.76, 134.48, 134.16, 131.39, 130.73, 129.36, 123.19, 122.85, 112.26, 111.23, 70.20, 53.88. HR-MS (ESI): [M+H<sup>+</sup>] calcd for C<sub>21</sub>H<sub>17</sub>N<sub>5</sub>O<sub>3</sub>S: 419.1622, found: 419.1819.

{[(naphthalen-1-yl)carbamoyl](1H-1,2,3-triazol-4-yl)methyl}amino benzoate white solid (Yield: Met A 90%, Met B, 94%); 114 °C. IR (NaCl)  $v(\text{cm}^{-1})$  3222 (NH), 1687 (CO) ester, and 1655 (CO) amide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.62 (s, 1H, NH-amide), 8.58 (d, J = 1.3 Hz, 1H, NH-ester), 8.49 (d, J = 10.9 Hz, 1H, Ar-H), 8.05 (s, 1H, Ar-H), 8.00 (d, J = 7.4 Hz, 9H, Ar-H), 7.73 (d, J = 8.2 Hz, 3H, Ar-H), 7.64 (d, J = 8.3 Hz, 1H, Ar-H), 7.49 – 7.39 (m, 12H, Ar-H), 7.32 (t, J = 7.8 Hz, 20H, Ar-H), 7.18 – 7.07 (m, 1H, Ar-H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.24 (CO-ester), 166.22 (CO-amide), 161.18, 156.21, 149.07, 145.86, 134.29, 133.77, 132.26, 129.56, 128.52, 127.48, 127.32, 126.90, 125.51, 124.64, 122.94, 121.75, 120.72, 118.83, 114.08. HR-MS (ESI): [M+H<sup>+</sup>] calcd for C<sub>21</sub>H<sub>17</sub>N<sub>5</sub>O<sub>3</sub> : 388.1363, found: 388.2044.

**[(1,5-dimethyl-3-oxo-2-phenylpyrazol-4-yl)](naphthalen-1-yl)carbamoyl]methyl]amino benzoate** brown solid (Yield: Met A 96%, Met B, 86%); m.p. 107 °C. IR (NaCl)  $\nu$ (cm<sup>-1</sup>) 3328 (NH), 1720 (CO) ester, and 1618 (CO) amide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.08 (d, J = 10.2 Hz, 1H), 9.63 (s, 1H, NH-amide), 9.30 (s, 1H, NH-ester), 8.50 (d, J = 11.0 Hz, 1H, Ar-H), 8.05 (d, J = 8.4 Hz, 1H, Ar-H), 7.99 (d, J = 7.8 Hz, 2H, Ar-H), 7.86 (d, J = 7.5 Hz, 1H, Ar-H), 7.75 (d, J = 7.8 Hz, 1H, Ar-H), 7.65 (d, J = 8.3 Hz, 1H, Ar-H), 7.54 (d, J = 8.1 Hz, 1H, Ar-H), 7.45 (t, J = 7.3 Hz, 1H, Ar-H), 7.32 (t, J = 7.5 Hz, 2H, Ar-H), 7.23 (d, J = 7.4 Hz, 1H, Ar-H), 7.17 (t, J = 7.1 Hz, 1H, Ar-H), 2.98 (s, 1H, CH<sub>3</sub>), 2.17 (s, 1H, CH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.26 (CO-amide), 165.71 (CO-hetero), 161.06 (COester), 148.68, 134.26, 133.49, 129.92, 129.54, 128.45, 127.74, 127.48, 127.19, 127.08, 126.85, 126.10, 125.70, 125.51, 124.64, 122.89, 121.76, 120.81, 118.84, 106.23, 35.43 (CH<sub>3</sub>), 12.29 (CH<sub>3</sub>). HR-MS (ESI): [M+H<sup>+</sup>] calcd for C<sub>30</sub>H<sub>26</sub>N<sub>4</sub>O<sub>4</sub> : 507.2215, found: 507.2319.

**{3-methyl-1-[(naphthalen-1-yl)carbamoyl]butyl}amino benzoate** yellow solid (Yield: Met A 92%, Met B, 95%); m.p. 125 °C. IR (NaCl) ν(cm<sup>-1</sup>) 3386 (NH), 1703 (CO) ester, and 1627 (CO) amide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.64 (d, J = 9.3 Hz, 1H, NH-amide), 8.55 (d, J = 11.1 Hz, 1H, CO-ester), 8.05 (d, J = 7.6 Hz, 5H, Ar-H), 7.83 (d, J = 8.3 Hz, 1H, Ar-H), 7.73 (d, J = 8.3 Hz, 1H, Ar-H), 7.59 – 7.48 (m, 4H, Ar-H), 7.40 (t, J = 7.7 Hz, 6H, Ar-H), 7.25 (d, J = 7.2 Hz, 1H, Ar-H), 3.08 (t, J = 6.6 Hz, 1H, CH<sub>2</sub>), 1.78 (dt, J = 13.4, 6.7 Hz, 1H, CH<sub>3</sub>), 0.87 (d, J = 6.7 Hz, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.74 (CO-ester), 165.37 (CO-amide), 160.07, 134.24, 133.68, 132.16, 130.31, 129.58, 128.49, 127.78, 127.17, 126.89, 125.52, 121.59, 120.53, 118.97, 47.07 (CH<sub>2</sub>), 28.42 (CH<sub>2</sub>), 20.09 (CH<sub>3</sub>). HR-MS (ESI): [M+H<sup>+</sup>] calcd for C<sub>23</sub>H<sub>24</sub>N<sub>2</sub>O<sub>3</sub>: 377.1826, found: 377.3040.

**{1H-1,3-benzodiazol-2-yl[(naphthalen-1-yl)carbamoyl]methyl}amino benzoate** white solid (Yield: Met A 85%, Met B, 80%); m.p. 139 °C. IR (NaCl) v(cm<sup>-1</sup>) 3273 (NH), 1696 (CO) ester, and 1624 (CO) amide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 11.59 (s, 1H), 10.03 (d, J = 9.5 Hz, 1H), 8.59 (s, 1H, NH-amide), 8.54 (d, J = 11.0 Hz, 1H, NH-ester), 8.05 (d, J = 8.2 Hz, 3H, Ar-H), 7.81 (d, J = 8.2 Hz, 1H, Ar-H), 7.72 (d, J = 8.3 Hz, 1H, Ar-H), 7.53 (t, J = 7.4 Hz, 2H, Ar-H), 7.39 (t, J = 7.6 Hz, 3H, Ar-H), 7.24 (d, J = 7.3 Hz, 1H, Ar-H), 5.20 (s, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 172.38 (CO-ester), 165.90 (CO-amide), 134.31, 133.83, 132.22, 130.12, 129.43, 128.42, 127.82, 127.29, 127.13, 126.90, 125.50, 121.65, 121.12, 120.33, 118.85, 112.47, 109.39, 102.62. HR-MS (ESI): [M+H<sup>+</sup>] calcd for C<sub>26</sub>H<sub>20</sub>N<sub>4</sub>O<sub>3</sub> : 437.1502, found: 437.2008.

**{1,3-benzothiazol-2-yl[(naphthalen-1-yl)carbamoyl]methyl}amino benzoate** white solid (Yield: Met A 95%, Met B, 88%); m.p. 142 °C. IR (NaCl)  $\nu$ (cm<sup>-1</sup>) 3406 (NH), 1683 (CO) ester, and 1626 (CO) amide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.56 (s, 1H, NH-amide), 9.67 (d, J = 9.5 Hz, 1H, NH-ester), 8.64 (s, 1H), 8.53 (d, J = 10.8 Hz, 1H, Ar-H), 8.35 (d, J = 8.4 Hz, 1H, Ar-H), 8.21 (s, 1H, Ar-H), 8.09 (d, J = 8.4 Hz, 1H, Ar-H), 8.04 (d, J = 7.9 Hz, 2H, Ar-H), 7.99 (d, J = 8.1 Hz, 1H, Ar-H), 7.90 (d, J = 7.5 Hz, 1H, Ar-H), 7.80 (d, J = 8.1 Hz, 1H, Ar-H), 7.68 (dd, J = 18.8, 8.5 Hz, 1H, Ar-H), 7.57 (d, J = 8.0 Hz, 1H, Ar-H), 7.54 – 7.44 (m, 2H, Ar-H), 7.37 (t, J = 7.8 Hz, 3H, Ar-H), 7.22 (d, J = 7.2 Hz, 1H, Ar-H), 7.18 – 7.09 (m, 1H, Ar-H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.77 (CO-amide), 165.52 (CO-ester), 160.07 (C-C Hetero), 154.11 (C-S, Hetero), 138.92, 134.28, 133.43, 132.21, 130.15, 129.85, 128.44, 128.20, 127.47, 127.14, 126.84, 126.16, 125.72, 124.98, 124.62, 122.97, 121.59, 120.14, 118.94, 116.54. HR-MS (ESI): [M+H<sup>+</sup>] calcd for C<sub>26</sub>H<sub>19</sub>N<sub>3</sub>O<sub>3</sub>S: 454.1123, found: 454.2017.

**[(5-methyl-1,2-oxazol-3-yl)](naphthalen-1-yl)carbamoyl]methyl]amino** benzoate brown solid (Yield: Met A 83%, Met B, 83%); m.p. 115 °C. IR (NaCl) v(cm<sup>-1</sup>) 3258 (NH), 1690 (CO) ester, and 1625 (CO) amide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 11.04 (s, 1H, NH-amide), 10.12 (s, 1H, NH-ester), 8.53 (d, J = 10.9 Hz, 1H, Ar-H), 8.38 (s, 1H, Ar-H), 8.03 (d, J = 7.9 Hz, 2H, Ar-H), 7.79 (d, J = 8.0 Hz, 1H, Ar-H), 7.69 (d, J = 8.2 Hz, 1H, Ar-H), 7.50 (t, J = 7.4 Hz, 1H, Ar-H), 7.37 (t, J = 7.7 Hz, 2H, Ar-H), 7.22 (d, J = 7.3 Hz, 1H, Ar-H), 6.69 (s, 1H,), 2.31 (s, 3H (CH<sub>3</sub>)). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 172.40 (CO-ester), 166.08 (CO-amide), 159.07 (C-C-Hetero), 148.23, 147.65, 144.31, 138.20, 135.74, 133.74, 132.21, 130.21, 129.57, 128.50, 127.74, 127.15, 126.86, 125.50, 121.70, 118.82, 97.18, 12.63 (CH<sub>3</sub>). HR-MS (ESI): [M+H<sup>+</sup>] calcd for C<sub>23</sub>H<sub>19</sub>N<sub>3</sub>O<sub>4</sub>; 402.1455, found: 402.0983.

#### [3-(3,4-dihydroxyphenyl)-3-hydroxy-1-[(naphthalen-1-yl)carbamoyl]propyl](methyl)amino

**benzoate** brown solid (Yield: Met A 89%, Met B, 92%); m.p. 133 °C IR (NaCl) *v*(cm<sup>-1</sup>) 3469 (OH), 3246 (NH), 1703 (CO) ester, and 1620 (CO) amide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.16 (d, J = 10.1 Hz, 1H, NH-amide), 9.39 (s, 1H, -OH), 8.46 (d, J = 10.8 Hz, 1H, -OH), 7.96 (d, J = 7.7 Hz, 2H, Ar-H), 7.68 (d, J = 7.9 Hz, 1H, Ar-H), 7.59 (d, J = 8.3 Hz, 1H, Ar-H), 7.42 (ddd, J = 22.5, 15.5, 7.0 Hz, 2H,

Ar-H), 7.29 (d, J = 7.6 Hz, 2H, Ar-H), 7.22 (t, J = 7.8 Hz, 1H, Ar-H), 7.11 (d, J = 7.3 Hz, 1H, Ar-H), 4.79 (s, 1H, -CH (chiral)), 3.97 (q, J = 7.1 Hz, 1H, CH<sub>2</sub>), 1.89 (s, 1H, CH<sub>3</sub>), 1.09 (t, J = 7.2 Hz, 1H, CH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.54 (CO-ester), 167.02 (CO-amide), 166.10 (C-OH), 161.34 (C-OH), 134.25, 133.61, 132.28, 130.15, 129.84, 129.64, 128.46, 128.35, 128.02, 127.42, 127.05, 126.82, 125.48, 124.92, 124.57, 122.82, 121.73, 118.73, 60.60, 21.04, 14.09. HR-MS (ESI): [M+H<sup>+</sup>] calcd for C<sub>28</sub>H<sub>26</sub>N<sub>2</sub>O<sub>6</sub>; 487.1733, found: 487.2906.

[(2-hydroxyphenyl)](naphthalen-1-yl)carbamoyl]methyl]amino benzoate brown solid (Yield: Met A 95%, Met B, 78%); m.p. 112 °C. IR (NaCl)  $v(\text{cm}^{-1})$  3451 (OH), 3234 (NH), 1679 (CO) ester, and 1628 (CO) amide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.34 (d, J = 11.3 Hz, 1H, NH-amide),  $\delta$  8.59 (s, 1H, OH), 8.55 (d, J = 11.0 Hz, 1H, NH-ester), 8.06 (d, J = 7.9 Hz, 4H, Ar-H), 8.00 (d, J = 8.2 Hz, 1H, Ar-H), 7.84 (d, J = 7.9 Hz, 1H, Ar-H), 7.74 (d, J = 8.3 Hz, 1H, Ar-H), 7.58 – 7.49 (m, 4H, Ar-H), 7.41 (t, J = 7.6 Hz, 5H, Ar-H), 7.26 (d, J = 7.3 Hz, 1H, Ar-H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.67 (CO-ester), 164.91 (CO-amide), 159.59 (C-OH), 134.28, 133.73, 132.10, 130.22, 129.49, 128.50, 127.76, 127.23, 127.13, 126.89, 126.32, 125.52, 121.47, 120.29, 118.99. HR-MS (ESI): [M+H<sup>+</sup>] calcd for C<sub>25</sub>H<sub>20</sub>N<sub>2</sub>O<sub>4</sub>; 413.0014, found: 413.0030.

[(4-hydroxyphenyl)](naphthalen-1-yl)carbamoyl]methyl]amino benzoate brown solid (Yield: Met A 91%, Met B, 86%); m.p. 108 °C. IR (NaCl)  $v(\text{cm}^{-1})$  3417 (OH), 3330 (NH), 1655 (CO) ester, and 1624 (CO) amide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.55 (d, J = 10.5 Hz, 1H, NH-amide), 8.31 (s, 1H, NH-ester), 7.96 (s, 1H, C-OH), 7.92 (d, J = 9.0 Hz, 1H, Ar-H), 7.82 (dd, J = 15.3, 8.0 Hz, 1H, Ar-H), 7.73 (d, J = 8.3 Hz, 1H, Ar-H), 7.66 (d, J = 8.3 Hz, 1H, Ar-H), 7.57 – 7.49 (m, 2H, Ar-H), 7.48 – 7.43 (m, 1H, Ar-H), 7.40 (t, J = 6.7 Hz, 1H, Ar-H), 7.26 (d, J = 7.3 Hz, 1H, Ar-H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.02 (CO-ester), 159.68 (CO-amide), 134.27, 131.97, 128.90, 128.62, 127.75, 127.14, 127.10, 126.87, 126.58, 126.29, 126.19, 125.74, 125.56, 121.23, 120.93, 120.36, 119.20. HR-MS (ESI): [M+H<sup>+</sup>] calcd for C<sub>25</sub>H<sub>20</sub>N<sub>2</sub>O<sub>4</sub>; 413.1454, found: 413.2126.

ethyl 2-{[(benzoyloxy)amino][(naphthalen-1-yl)carbamoyl]methyl}benzoate white solid (Yield: Met A 87%, Met B, 93%); m.p. 146 °C IR (NaCl)  $v(\text{cm}^{-1})$  3277 (NH), 1687 (CO) ester, and 1608 (CO) amide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  11.11 (s, 1H, NH-amide), 10.60 (s, 1H, NH-ester), 8.98 (d, J = 11.1 Hz, 1H, Ar-H), 8.73 (d, J = 8.4 Hz, 1H, Ar-H), 8.55 (s, 1H, Ar-H), 8.19 (d, J = 8.4 Hz, 1H, Ar-H), 8.14 (d, J = 7.5 Hz, 2H, Ar-H), 8.07 (d, J = 7.6 Hz, 1H, Ar-H), 7.91 (d, J = 8.2 Hz, 1H, Ar-H), 7.68 (t, J = 7.5 Hz, 1H, Ar-H), 7.60 (dt, J = 7.0, 5.6 Hz, 2H, Ar-H), 7.55 (d, J = 7.7 Hz, 1H, Ar-H), 7.52 – 7.40 (m, 3H, Ar-H), 7.38 (d, J = 8.3 Hz, 1H, Ar-H), 7.14 (t, J = 7.6 Hz, 1H, Ar-H), 4.39 (q, J = 7.1 Hz, 2H, CH<sub>2</sub>), 1.43 (t, J = 7.1 Hz, 4H, CH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.74 (CO-ester), 168.11 (Cobenzoate), 159.90 (CO-amide), 140.36, 134.62, 133.65, 130.91, 130.17, 129.85, 129.62, 128.47,

128.36, 128.05, 127.45, 124.96, 124.60, 123.22, 122.92, 121.21, 115.89, 115.51, 61.60 (CH<sub>2</sub>), 14.19 (CH<sub>3</sub>). HR-MS (ESI): [M+H<sup>+</sup>] calcd for C<sub>28</sub>H<sub>24</sub>N<sub>2</sub>O<sub>5</sub>; 469.1713, found: 469.2601.

**{3-methoxy-1-[(naphthalen-1-yl)carbamoyl]propyl}amino benzoate** white solid (Yield: Met A 84%, Met B, 86%); m.p. 125 °C IR (NaCl) v(cm<sup>-1</sup>) 3344 (NH), 1660 (CO) ester, and 1604 (CO) amide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 11.27 (s, 1H, NH-amide), 10.07 (d, J = 9.9 Hz, 1H, NH-ester), 8.50 (d, J = 10.1 Hz, 1H, Ar-H), 8.11 – 7.92 (m, 4H, Ar-H), 7.92 – 7.85 (m, 1H, Ar-H), 7.75 (d, J = 8.1 Hz, 3H, Ar-H), 7.66 (d, J = 8.3 Hz, 1H, Ar-H), 7.52 (dd, J = 14.4, 6.4 Hz, 2H, Ar-H), 7.43 (d, J = 6.3 Hz, 1H, Ar-H), 7.30 (dd, J = 14.1, 6.2 Hz, 2H, Ar-H), 7.17 (d, J = 7.3 Hz, 1H, Ar-H), 1.87 (s, 1H,), 1.14 (s, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.99 (CO-ester), 165.88 (CO-amide), 134.27, 133.73, 132.28, 130.22, 129.88, 129.61, 128.52, 128.07, 127.48, 127.16, 126.90, 125.52, 124.98, 124.63, 122.93, 121.69, 118.77, 82.57, 24.91. HR-MS (ESI): [M+H<sup>+</sup>] calcd for C<sub>22</sub>H<sub>22</sub>N<sub>2</sub>O<sub>4</sub>; 379.1630, found: 379.1625.

[(9,10-dioxo-9,10-dihydroanthracen-2-yl)[(naphthalen-1-yl)carbamoyl]methyl]amino benzoate brown solid (Yield: Met A 90%, Met B, 92%); m.p. 143 °C. IR (NaCl)  $\nu$ (cm<sup>-1</sup>) 3328 (NH), 1714 (CO) ester, and 1633 (CO) amide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.20 (d, J = 10.2 Hz, 1H, NH-amide), 10.07 (s, 1H, NH-ester), 8.49 (d, J = 10.9 Hz, 1H, Ar-H), 8.01 (t, J = 10.6 Hz, 3H, Ar-H), 7.72 (d, J = 8.1 Hz, 1H, Ar-H), 7.63 (d, J = 8.3 Hz, 1H, Ar-H), 7.55 – 7.36 (m, 3H, Ar-H), 7.38 – 7.21 (m, 3H, Ar-H), 7.25 – 7.11 (m, 1H, Ar-H), 4.76 (s, 1H, CH), 1.12 (t, J = 7.1 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.07 (CO-anthraquinone), 166.06 (CO-ester), 161.18 (CO-amide), 134.28, 133.76, 132.26, 130.23, 129.89, 129.56, 128.52, 128.38, 128.07, 127.47, 127.29, 127.15, 126.89, 125.51, 124.97, 124.63, 122.92, 121.73, 118.82, 60.66, 13.82. HR-MS (ESI): [M+H<sup>+</sup>] calcd for C<sub>33</sub>H<sub>22</sub>N<sub>2</sub>O<sub>5</sub>; 527.1545, found: 527.1718.

**[2-(furan-2-yl)-1-[(naphthalen-1-yl)carbamoyl]ethyl]amino benzoate** yellow solid (Yield: Met A 88%, Met B, 93%); m.p. 121 °C. IR (NaCl)  $\nu$ (cm<sup>-1</sup>) 3226 (NH), 1660 (CO) ester, and 1600 (CO) amide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.25 (s, 1H, NH-amide), 10.18 (d, J = 9.9 Hz, 1H, NH-ester), 8.47 (d, J = 10.9 Hz, 1H, Ar-H), 7.99 (t, J = 10.0 Hz, 3H, Ar-H), 7.71 (d, J = 7.0 Hz, 1H, Ar-H), 7.62 (d, J = 8.2 Hz, 1H, Ar-H), 7.50 (d, J = 7.1 Hz, 1H, Ar-H), 7.44 (t, J = 7.7 Hz, 3H, Ar-H), 7.28 (dt, J = 23.2, 7.7 Hz, 3H, Ar-H), 7.13 (d, J = 7.3 Hz, 1H, Ar-H), 4.33 (d, J = 5.7 Hz, 1H), 1.88 (d, J = 21.4 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 172.02 (CO-ester), 166.11 (CO-amide), 161.16 (C-hetero), 134.29, 133.73, 132.27, 130.23, 129.89, 129.62, 128.51, 128.07, 127.47, 127.15, 126.89, 125.51, 124.97, 124.63, 122.91, 121.74, 118.80, 35.27. HR-MS (ESI): [M+H<sup>+</sup>] calcd for C<sub>33</sub>H<sub>22</sub>N<sub>2</sub>O<sub>5</sub>; 527.1502, found: 527.1709.

ethyl 2-{2-[(benzoyloxy)amino]-2-(pyridin-4-yl)acetamido}benzoate white solid (Yield: Met A 94%, Met B, 92%); m.p. 138 °C IR (NaCl) v(cm<sup>-1</sup>) 3236 (NH), 1688 (CO) ester, and 1612 (CO) amide.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.95 (s, 1H, NH-amide), 10.48 (d, J = 9.5 Hz, 1H, NH-ester), 8.83 (d, J = 11.1 Hz, 1H, Ar-H), 8.76 – 8.57 (m, 1H, Ar-H), 8.57 (d, J = 8.5 Hz, 1H, Ar-H), 8.40 (s, 1H, Ar-H), 7.97 (d, J = 8.0 Hz, 2H, Ar-H), 7.89 (d, J = 8.0 Hz, 1H, Ar-H), 7.48 – 7.33 (m, 2H, Ar-H), 7.30 (t, J = 7.5 Hz, 2H, Ar-H), 7.22 (d, J = 8.1 Hz, 1H, Ar-H), 7.04 – 6.88 (m, 1H, Ar-H), 4.21 (q, J = 7.1 Hz, 3H, CH<sub>2</sub>), 1.25 (t, J = 7.1 Hz, 4H, CH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.90 (CO-ester), 167.97 (CO-amide), 160.14 (CO-ester), 140.24, 134.48, 133.44, 131.79, 130.85, 130.06, 129.70, 128.37, 123.18, 121.16, 115.40, 61.54, 60.26, 14.09. HR-MS (ESI): [M+H<sup>+</sup>] calcd for C<sub>23</sub>H<sub>21</sub>N<sub>3</sub>O<sub>5</sub>; 420.1425, found: 420.1090.

{**[(3-bromophenyl)carbamoyl](pyridin-4-yl)methyl}amino benzoate** yellow solid (Yield: Met A 91%, Met B, 84%); m.p. 109 °C. IR (NaCl)  $\nu$ (cm<sup>-1</sup>) 3351 (NH), 1683 (CO) ester, and 1604(CO) amide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.24 (s, 1H), 8.61 (d, J = 10.9 Hz, 1H), 8.32 (s, 1H), 8.05 (d, J = 7.8 Hz, 6H), 7.73 (s, 1H), 7.54 (t, J = 7.3 Hz, 3H), 7.40 (dd, J = 13.9, 6.5 Hz, 7H), 7.31 – 7.21 (m, 2H), 7.15 (dt, J = 16.9, 8.7 Hz, 3H), 7.00 (d, J = 7.9 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.43 (CO-ester), 159.20 (CO-amide), 137.96, 133.74, 131.11, 130.45, 130.20, 129.50, 128.50, 127.93, 123.39, 122.92, 122.73, 121.80, 118.41, 117.31. HR-MS (ESI): [M+H<sup>+</sup>] calcd for C<sub>20</sub>H<sub>16</sub>BrN<sub>3</sub>O<sub>3</sub>; 426.0314, found: 426.0618.

{[(naphthalen-1-yl)carbamoyl](1,3-thiazol-2-yl)methyl}amino benzoate brown solid (Yield: Met A 90%, Met B, 95%); m.p. 135 °C. IR (NaCl)  $\nu$ (cm<sup>-1</sup>) 3241 (NH), 1695 (CO) ester, and 1638 (CO) amide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.47 (s, 1H, NH-amide), 10.00 (d, J = 10.1 Hz, 1H, NH-ester), 8.65 – 8.39 (m, 1H, Ar-H), 8.02 (t, J = 10.0 Hz, 2H, Ar-H), 7.90 (d, J = 7.5 Hz, 1H, Ar-H), 7.80 (d, J = 7.6 Hz, 1H, Ar-H), 7.69 (d, J = 8.2 Hz, 1H, Ar-H), 7.50 (t, J = 7.2 Hz, 1H, Ar-H), 7.45 – 7.29 (m, 3H, Ar-H), 7.21 (d, J = 7.5 Hz, 1H, Ar-H), 6.91 (d, J = 3.6 Hz, 1H, Ar-H), 6.70 (d, J = 7.0 Hz, 1H, Ar-H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.78 (CO-ester0, 165.67 (CO-amide), 158.74 (C-thiazole), 135.62, 134.28, 133.50, 132.35, 130.09, 128.49, 127.74, 127.16, 127.09, 126.88, 126.36, 125.91, 124.97, 121.66, 118.87, 113.96, 109.97. HR-MS (ESI): [M+H<sup>+</sup>] calcd for C<sub>22</sub>H<sub>17</sub>N<sub>3</sub>O<sub>3</sub>S; 404.1012, found: 404.1815.

2. Spectral data of synthesized compounds



4a. {[(naphthalen-1-yl)carbamoyl](pyridin-4-yl)methyl}amino benzoate.

Figure S1.1 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum



Figure S1.2. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum



# 4b. {[(naphthalen-1-yl)carbamoyl](pyridin-2-yl)methyl}amino benzoate

Figure S1.3. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum



Figure S1.4. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum

## 4c. {[(naphthalen-1-yl)carbamoyl](5-sulfanyl-1H-1,2,3-triazol-4-yl)methyl}amino benzoate



Figure S1.5. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum



Figure S1.6. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum

## 4d. {[(naphthalen-1-yl)carbamoyl](1H-1,2,3-triazol-4-yl)methyl}amino benzoate



Figure S1.7. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum



Figure S1.8. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum

# 4e. [(1,5-dimethyl-3-oxo-2-phenylpyrazol-4-yl)[(naphthalen-1-yl)carbamoyl]methyl]amino



## benzoate.

Figure S1.9. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum



Figure S1.10. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum





Figure S1.11. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum



Figure S1.12. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum

## 4g. {1H-1,3-benzodiazol-2-yl[(naphthalen-1-yl)carbamoyl]methyl}amino benzoate



Figure S1.13. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum



e S1.14. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum

# 4h. {1,3-benzothiazol-2-yl[(naphthalen-1-yl)carbamoyl]methyl}amino benzoate



Figure S1.15. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum



Figure S1.16. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum

# 4i. [(5-methyl-1,2-oxazol-3-yl)[(naphthalen-1-yl)carbamoyl]methyl]amino benzoate



Figure S1.17. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum



Figure S1.18. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum

## 4j. [3-(3,4-dihydroxyphenyl)-3-hydroxy-1-[(naphthalen-1-



## yl)carbamoyl]propyl](methyl)amino benzoate.

Figure S1.19. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum



Figure S1.20. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum

# 4k. [(2-hydroxyphenyl)[(naphthalen-1-yl)carbamoyl]methyl]amino benzoate



Figure S1.21. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum



Figure S1.22. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum

# 41. [(4-hydroxyphenyl)[(naphthalen-1-yl)carbamoyl]methyl]amino benzoate



Figure S1.23. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum



Figure S1.24. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum

## 4m. ethyl 2-{[(benzoyloxy)amino][(naphthalen-1-yl)carbamoyl]methyl}benzoate



Figure S1.25. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum

![](_page_20_Figure_3.jpeg)

Figure S1.26. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum

![](_page_21_Figure_0.jpeg)

![](_page_21_Figure_1.jpeg)

Figure S1.27. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum

![](_page_21_Figure_3.jpeg)

Figure S1.28. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum

# 40. [(9,10-dioxo-9,10-dihydroanthracen-2-yl)[(naphthalen-1-yl)carbamoyl]methyl]amino

![](_page_22_Figure_1.jpeg)

## benzoate.

Figure S1.29. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum

![](_page_22_Figure_4.jpeg)

Figure S1.30. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum

# 4p. [2-(furan-2-yl)-1-[(naphthalen-1-yl)carbamoyl]ethyl]amino benzoate.

![](_page_23_Figure_1.jpeg)

Figure S1.31. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum

![](_page_23_Figure_3.jpeg)

e S1.32. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum

## 4q. ethyl 2-{2-[(benzoyloxy)amino]-2-(pyridin-4-yl)acetamido}benzoate

![](_page_24_Figure_1.jpeg)

Figure S1.33. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum

![](_page_24_Figure_3.jpeg)

Figure S1.34. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum

# 4r. {[(3-bromophenyl)carbamoyl](pyridin-4-yl)methyl}amino benzoate.

![](_page_25_Figure_1.jpeg)

Figure S1.35. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum

![](_page_25_Figure_3.jpeg)

Figure S1.36. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum

![](_page_26_Figure_0.jpeg)

4s. [(naphthalen-1-yl)carbamoyl](1,3-thiazol-2-ylamino)methyl benzoate.

Figure S1.37. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum

![](_page_26_Figure_3.jpeg)

Figure S1.38. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum.