1

Supporting information

2 Highly Porous Gold Supraparticles as Surface-enhanced Raman 3 Spectroscopy (SERS) Substrates for Sensitive Detection of 4 Environmental Contaminants

- 5 Seju Kang^{a,b*}, Wei Wang^{a,b}, Asifur Rahman^{a,b}, Wonil Nam^c, Wei Zhou^c, Peter J. Vikesland^{a,b*}
- 6 ^aDepartment of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia;

⁷ ^bVirginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable
 ⁸ Nanotechnology Center (VTSuN), Blacksburg, Virginia;

9 °Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia;

10

11 *Corresponding authors: seju@vt.edu, pvikes@vt.edu

Postal address: 415 Durham, Virginia Tech, Blacksburg 24061, VA, USA

14 Keywords: Supraparticles, surface-enhanced Raman spectroscopy (SERS), environmental

15 contaminants, porosity, self-assembly,

- 16
- 17
- 18
- 19Total Pages: 520Figures S3
- 20Figures S3Pages S221Tables S1-S3Pages S3-S4
- 22 SI References Page S5
- 23 24

- 25 26 Figure S1. Energy dispersive spectroscopy (EDS) spectra of the Au/PS supraparticle from two
- 27 different positions; a polystyrene (PS) nanoparticle and Au nanoparticle aggregates. The mass 28 percent of Au and C, a representative of PS from EDS spectra.
- 29

- 31 Figure S2. Absorbance spectra of MGITC solution before and after 2 hrs of contact with the
- 32 porous Au supraparticle.
- 33
- 34

Figure S3. (A)-(D) Sorption kinetics of environmental contaminants (100 nM MGITC, 10 μ M 37 RhoB, 10 μ M BZT, 1 mM ATZ) based on the Raman intensity increases of their characteristic 38 peaks with time. The symbols and error bars indicate the means and standard deviation of the 39 normalized Raman signals from the 400 SERS spectra.

62 Table S1. Gene sequences for *int*I1

00 Table 52. SERS peaks and corresponding assignments

	Wavenumber (cm ⁻¹)	Assignments			
	MGITC				
	418	Out-of-plane benzene ring deformation	1		
	1171	In-plane benzene v ₉ mode The aromatic ring stretching mode			
	1364				
	1388	In-plane C–C/C–H stretch	3		
	RhoB				
	1194	C-C bridge band stretching	4		
	1279	Aromatic C–H bending aromatic	4		
	1506	Aromatic C–C bending	5		
	BZT				
	419	419 C-S stretching, C-C-C ring bending (ring breathing)			
	994	994 C–H ring bending			
	1021	C-C-C bending and C-S stretching	6		
	1068	C-C-C bending and C-S stretching	6		
	ATZ				
	655	Asymmetric deformation N–C–N/C–N–C and ring breathing	7		
	961	Asymmetric deformation N–C–N/C–N–C and ring breathing	7		
	Gene segment	· · · ·			
	730	Adenine	8		
	959	959Deoxyribose1315Guanine			
	1315				
	1335	Adenine	8		
	1458	Deoxyribose	10		
67					
68					
69					
07					

70

рН	Na ⁺	Mg^{2+}	Si ⁴⁺	\mathbf{P}^+	K^+	Ca ⁺
	(mg/L)					
6.51	158.27 ± 5.01	6.58 ± 0.37	8.06 ± 0.70	6.10 ± 0.30	16.67 ± 0.27	12.38 ± 0.41
Specific Conductivity	F-	Cl-	NO ²⁻	PO4 ³⁻	SO4 ²⁻	Br-
(µS/cm)	(mg/L)					
1172.0	0.10 ± 0.01	135.39 ± 0.02	$\begin{array}{c} 0.35 \\ \pm \ 0.02 \end{array}$	5.74 ± 0.08	$\begin{array}{c} 21.76 \\ \pm 0.28 \end{array}$	0.12 ± 0.00
Total organic carbon (TOC, mg/L)						
5.38						

72 Table S3. The composition of wastewater influent

73 The cation and anion compositions were analyzed by using inductively-coupled plasma-mass

spectrometer (ICP-MS) and ion chromatography (IC). The sample was filtered through 0.45 μm
polytetrafluoroethylene (PTFE) filter.

93 **References**

- A. Kamińska, I. Dzięcielewski, J. L. Weyher, J. Waluk, S. Gawinkowski, V. Sashuk, M.
 Fiałkowski, M. Sawicka, T. Suski, S. Porowski and R. Hołyst, *J. Mater. Chem.*, 2011, 21, 8662.
- 97 2 M. Li, J. Zhang, S. Suri, L. J. Sooter, D. Ma and N. Wu, *Anal. Chem.*, 2012, 84, 2837–2842.
- 99 3 W. Leng and P. J. Vikesland, *Langmuir*, 2014, **30**, 8342–8349.
- 100 4 S. Aghajani, A. Accardo and M. Tichem, ACS Appl. Nano Mater., 2020, 3, 5665–5675.
- 101 5 V. Moreno, K. Murtada, M. Zougagh and Á. Ríos, *Spectrochim. Acta Part A Mol. Biomol.*102 Spectrosc., 2019, 223, 117302.
- 103 6 F. Madzharova, Z. Heiner and J. Kneipp, J. Phys. Chem. C, 2020, 124, 6233–6241.
- 104 7 S. Bonora, E. Benassi, A. Maris, V. Tugnoli, S. Ottani and M. Di Foggia, *J. Mol. Struct.*,
 2013, 1040, 139–148.
- 106 8 S. Dick and S. E. J. Bell, *Faraday Discuss.*, 2017, **205**, 517–536.
- 107 9 Y. Li, T. Gao, G. Xu, X. Xiang, X. Han, B. Zhao and X. Guo, *J. Phys. Chem. Lett.*, 2019, 10, 3013–3018.
- 109 10 A. J. Ruiz-Chica, M. A. Medina, F. Sánchez-Jiménez and F. J. Ramírez, J. Raman
 110 Spectrosc., 2004, 35, 93–100.
- 111