Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supporting Information

New boro amino amide organocatalysts for asymmetric cross Aldol reaction of ketones with carbonyl compounds

Zubeda Begum,^a Chigusa Seki,^a Yuko Okuyama,^b Eunsang Kwon,^c Koji Uwai,^a Michio Tokiwa,^d Suguru Tokiwa,^d Mitsuhiro Takeshita,^d and Hiroto Nakano^a

^a Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of

Technology, 27-1 Mizumoto-cho, Muroran 050-8585, Japan.

E-mail: catanaka@mmm.muroran-it.ac.jp

^bTohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan

^cResearch and Analytical Centre for Giant Molecules, Graduate School of Sciences, Tohoku University 6-3 Aoba, Aramaki,

Aoba-ku, Sendai 980-8578, Japan.

^d Tokiwakai Group, 62 Numajiri, Tsuduri-chou Uchigo, Iwaki 973-8053, Japan.

CONTENTS

		Pages
1.	General information	2
2.	Experimental Procedure	3-4
3.	Experimental data	5-11
4.	¹ H & ¹³ C NMR spectra of the catalysts	12-26
5.	¹ H & Mass spectra of the aldol products	27-44
6.	HPLC spectra of the aldol products	45-62
7.	Theoretical Calculations	63-73

1. General Information

Reagents and dry solvents were of the commercially available maximum grade and used without further purification. Reactions were performed out under an inert atmosphere in flame dried and cooled glassware. The reaction was monitored by thin layer chromatography (TLC) using Merck silica plate gel 60 F₂₅₄ aluminum sheet. Also, the purifications of products were confirmed using column chromatography techniques in silica gel 60 N (40–50 μm) purchased from Kanto Chemical Company. Visualization of the products was confirmed by ultraviolet light, iodine vapor and ninhydrin stain. ¹H and ¹³C NMR spectra were recorded on a JEOL JNM-ECA500 (¹H for 500 MHz and ¹³C for 125 MHz). All spectra were recorded at 21 °C. Chemical shifts (δ) are reported in parts per million (ppm) relative to the signals of tetramethylsilane (TMS) using the residual solvents signals. Report data for ¹H NMR spectroscopy are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quadruplet, dd = doublet of doublets, td = triplet of doublets, m = multiplet and br = broad, coupling constants (J) and assimilation were measured in hertz (Hz). Optical rotation measured by JASCO DIP-360 polarimeter. The melting point were measured using a Yanaco micro melting point apparatus. High resolution mass spectra (HRMS) data were collected by electron impact (EI) using Hitachi RMG-GMG and JEOL JNK-DX303 sector instruments. The result values were determined for enantiomeric excess (ee) using high pressure liquid chromatography (HPLC) principle by DAICEL CHIRALPAK AD-H, OD-H, AS-H column.

2. Experimental procedure

2.1 General procedure for the synthesis of boro amino amide organocatalysts 4a, 4b-g, 4h

To a solution of Fmoc-t-Leucine **1a**, *N*-Boc amino acids **1b-f**, *N*-Boc-L-Proline **1g** (1.0 mmol) respectively, HATU (1.2 mmol) and DIPEA (1.5 mmol) were added in dry DMF and stirred for 15min. The corresponding 2-pinacolyl boro phenyl amine **2a**,2-pinenyl boro phenyl amine **2b** (1.0 mmol) respectively were added slowly and the reaction mixture was gradually allowed to stir from 0 °C to 30 °C until the reaction completion. After the reaction was completed, as monitored by TLC, reaction mixture was diluted with water, the crude products were extracted with CHCl₃, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography to afford the corresponding N-protected boro amino amides **3a**, **3b-g**.

(4a)

To a solution of **3a** (1.0 mmol) in acetonitrile was added 20% piperidine in DMF (5V) at 0 °C and the reaction mixture was gradually allowed to stir from 0 °C to 30 °C until the reaction completion. After the reaction was completed, as monitored by TLC, the solvent was removed under a reduced pressure and the obtained residue was subjected to flash column chromatography to afford the compound **4a**.

(4b-g)

To a solution of **3b-g** in dry CH_2CI_2 , TFA was added dropwise over a period of times (v/v) at 0 °C and successively stirred at room temperature (r.t.) for 4 h. After the reaction completion, CH_2CI_2 and TFA were removed under a reduced pressure, the residue was basified by drop-wise addition of saturated NaHCO₃ solution at 0 °C and stirred for 1 hour at r.t.. The crude products were extracted with $CHCI_3$, dried over Na_2SO_4 and concentrated under reduced pressure. The residue was purified by flash column chromatography to afford the corresponding boro amino amides **4b-g**.

(4h)

To a solution of 4b (1.0 mmol) in acetonitrile was added K₂CO₃ (2.0 mmol) and methyl lodide (1.2

mmol) and the reaction was stirred at reflux condition until the reaction completion. After the reaction completion as monitored by T.L.C., the solvent was removed under a reduced pressure, the crude residue was diluted with water and extracted with $CHCl_3$, dried over Na_2SO_4 and concentrated under reduced pressure. The residue was purified by flash column chromatography to afford the corresponding methylated boro amino amide **4h**.

2.2 General procedure for the asymmetric aldol reaction of various ketones with aromatic aldehydes

The boro amino amide catalyst 4b (10 mol%) and benzoic acid (20 mol%) were added to a solution of ketones (0.4 mmol) and the aldehydes (0.1 mmol) under the sea water and tap water (1:1) as solvent reaction condition. The reaction mixture was stirred at 25 °C for appropriate time until the reaction completion, monitored by thin layer chromatography (TLC). The reaction mixture was directly purified by flash column chromatography on SiO₂ (*n*-hexane/CH₃CO₂Et) to afford the corresponding aldol products. The compounds are the known compounds and the structures were identified by spectral data which were in good agreement with those reported. The enantiomeric excess (ee) was determined using high pressure liquid chromatography (HPLC) CHIRALPAK OD-H columns.11 principle by DAICEL AD-H, AS-H,

3. Experimental Data

(S)-2-AminoFmoc-N-(-pinacol phenyl boronate)-3,3-dimethylbutanamide (3a)

Colorless solid; 88% yield; mp 72-76 °C; $[\alpha]_D^{20}$ = -35.80 (c = 0.1, CHCl₃); IR (neat) 3362, 2972, 1614, 1581, 1447, 1351, 1140, 1119, 1072, 757 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.55 (s, 1H), 8.52 (d, *J* = 8.6 Hz, 1H), 7.80-7.70 (m, 4H), 7.64-7.54 (m, 2H), 7.51-7.45 (m, 1H), 7.42-7.35 (m, 2H), 7.33-7.27 (m, 1H), 7.13-7.05 (m, 1H), 5.71 (d, *J* = 5.7 Hz, 1H), 4.47-4.39 (m, 1H), 4.38-4.29 (m, 1H), 4.27-4.20 (m, 1H), 4.02 (d, *J* = 9.2 Hz, 1H), 1.36 (d, *J* = 5.1Hz, 12H), 1.07 (s, 9H); ¹³C NMR (125 MHz, CDCl₃, ppm): δ 169.2, 156.4, 143.9, 143.5, 141.7, 136.8, 136.6, 133.3, 132.9, 127.8, 127.1, 125.3, 123.3, 120.2, 118.8, 84.7, 66.9, 64.2, 46.4, 35.4, 26.9, 25.03, 25.0, 24.8. MS (EI) *m/z* : 554 [M]⁺, HRMS m/z: [EI] calculated for C₃₃H₃₉BN₂O₅ [M]⁺: 554.2952; found 554.2944.

(S)-2-Amino-N-(-pinacol phenyl boronate)-3,3-dimethylbutanamide (4a)

viscous liquid; 55% yield; $[\alpha]_D^{20}$ = -45.80 (c = 0.10, CHCl₃); IR (neat) 2971, 2360, 1607, 1445, 1152, 1021, 753cm⁻¹; ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.43 (s, 1H), 7.14-7.05 (m, 1H), 7.03-6.97 (m, 1H), 6.95-6.89 (m, 1H), 6.86-6.80 (m, 1H), 3.35 (s, 1H), 1.23 (s, 12H), 1.07 (s, 9H) ; ¹³C NMR (125 MHz, CDCl₃, ppm): δ 172.9, 143.6, 136.0, 132.3, 123.5, 118.8, 83.9, 75.2, 66.0, 34.7, 26.8, 25.1, 24.9; MS (EI): m/z = 332 [M]⁺, HRMS m/z: [EI] calculated for C₁₈H₂₉BN₂O₃ [M]⁺: 332.2271; found 332.2272.

(S)-2-Aminoboc-N-((+)-2,3-pinanediol phenyl boronate)-3,3-dimethylbutanamide (3b)

transparent liquid; 91% yield; mp 153 °C; $[\alpha]_D^{20} = -22.80$ (c = 0.10, CHCl₃) ; IR (neat) 3367, 2966, 1692, 1478, 1447, 1357, 1342, 1162, 1055, 1039 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.42 (s, 1H), 8.44 (d, *J* = 8.59 Hz, 1H), 7.87-7.74 (m, 1H), 7.46-7.43 (m, 1H), 7.12-7.06 (m, 1H), 5.38 (d, *J* = 14.89 Hz, 1H), 4.52-4.42 (m, 1H), 3.93 (d, *J* = 9.16 Hz, 1H), 2.47-2.37 (m, 1H), 2.32-2.11 (m, 2H), 2.04-1.89 (m, 2H), 1.52 (s, 3H), 1.42 (s, 9H), 1.31 (s, 3H), 1.18-1.12 (m, 1H), 1.06 (s, 9H), 0.89 (s, 3H) ; ¹³C NMR (125 MHz, CDCl₃, ppm): δ 169.6, 155.8, 144.0, 136.4, 132.9, 123.3, 119.4, 87.5, 79.7, 78.2, 63.9, 51.4, 39.5, 38.4, 35.6, 33.4, 31.6, 28.8, 28.4, 27.1, 26.8, 26.5, 24.1, 22.7, 14.2; MS (EI): m/z = 484 [M]⁺, HRMS m/z: [EI] calculated for C₂₇H₄₁BN₂O₅ [M]⁺: 484.3109; found 484.3107.

(S)-2-Amino-N-((+)-2,3-pinanediol phenyl boronate)-3,3-dimethylbutanamide (4b)

Colorless solid; 80% yield; mp 50-53 °C; $[\alpha]_D^{20} = -34.80$ (c = 0.40, CHCl₃); IR (neat) 3674, 2925, 2359, 1632, 1600, 1480, 1447, 1370, 1166, 1054, 1033 759 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.49 (d, *J* = 8.59 Hz, 1H), 7.79-7.74 (m, 1H), 7.45-7.42 (m, 1H), 7.11-7.03 (m, 1H), 4.51-4.43 (m, 1H), 3.14 (s, 1H), 2.46-2.37 (m, 1H), 2.23-2.10 (m, 2H), 2.05-1.90 (m, 2H), 1.50 (s, 3H), 1.31 (s, 3H), 1.24-1.21 (m, 1H), 1.03 (s, 9H), 0.89 (s, 3H); ¹³C NMR (125 MHz, CDCl₃, ppm): δ 181.1, 172.9, 144.4, 136.4, 133.2, 123.8, 119.1, 86.9, 78.1, 65.6, 51.6, 39.6, 38.2, 35.5, 35.0, 28.8, 27.1, 26.9, 26.5, 23.8; MS (EI): m/z = 385 [M+H]⁺ HRMS m/z: [EI] calculated for C₂₂H₃₃BN₂O₃ [M]⁺: 384.2584 found [M+1]⁺: 385.2659.

(S)-2-Aminoboc-N-((+)-2,3-pinanediol phenyl boronate)-3-methyl butanamide (3c)

transparent liquid; 89% yield; mp 153 °C; $[\alpha]_D^{20}$ = -36.80 (c = 0.40, CHCl₃) ; IR (neat) 3346, 2928, 1688, 1613, 1480, 1447, 1343, 1159, 1076, 1041, 761 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.56 (s, 1H), 8.51-8.41 (m, 1H), 7.78 (d, *J* = 6.30 Hz, 1H), 7.51-7.39 (m, 1H), 7.14-7.04 (m, 1H), 5.19 (d, *J* = 8.59 Hz, 1H), 4.49 (d, *J* = 8.02 Hz, 1H), 4.20-4.08 (m, 1H), 2.47-2.41 (m, 1H), 2.33-2.16 (m, 2H), 2.03-1.91 (m, 2H), 1.59-1.57 (m, 1H), 1.52 (s, 3H), 1.49 (s, 9H), 1.32 (s, 3H), 1.20-1.13 (m, 1H), 1.00 (d, *J* = 6.87 Hz, 3H), 0.93 (d, *J* = 6.87 Hz, 3H), 0.89 (s, 3H); ¹³C NMR (125 MHz, CDCl₃, ppm): δ 169.9, 155.8, 144.2, 136.6, 133.0, 123.3, 119.0, 87.2, 79.8, 78.2, 61.0, 51.5, 39.8, 38.4, 35.7, 31.7, 28.8, 28.3, 27.1, 26.5, 24.3, 19.3, 17.6; MS (EI): m/z = 470 [M]⁺, HRMS m/z: [EI] calculated for C₂₆H₃₉BN₂O₅ [M]⁺: 470.2952; found 470.2947.

(S)-2-Amino-N-((+)-2,3-pinanediol phenyl boronate)-3-methyl butanamide (4c)

transparent liquid; 80% yield; mp 153 °C; $[\alpha]_D^{20} = -54.80$ (c = 0.10, CHCl₃); IR (neat) 3273, 2960, 2922, 2869, 1479, 1447, 1357, 1166, 1076, 1051, 760 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.37-8.29 (m, 1H), 7.80-7.70 (m, 1H), 7.46-7.39 (m, 1H), 7.13-7.04 (m, 1H), 4.46 (d, *J* = 10.31 Hz, 1H), 3.34 (d, *J* = 4.01 Hz, 1H), 2.47-2.36 (m, 1H), 2.34-2.27 (m, 1H), 2.26-2.17 (m, 1H), 2.15-2.11 (m, 1H), 2.03-1.88 (m, 2H), 1.49 (s, 3H), 1.30 (s, 3H), 1.02 (d, *J* = 6.87 Hz, 3H), 1.24-1.22 (m, 1H), 0.93-0.83 (m, 6H); ¹³C NMR (125 MHz, CDCl₃, ppm): δ 173.8, 136.1, 132.1, 123.1, 119.3, 87.1, 78.2, 61.4, 51.3, 39.5, 38.1, 36.2, 31.6, 28.9, 27.3, 26.5, 24.1, 19.8, 16.5; MS (EI): m/z = 370 [M]⁺, HRMS m/z: [EI] calculated for C₂₁H₃₁BN₂O₃ [M]⁺: 370.2428; found 370.2430.

(S)-2-Aminoboc-N-((+)-2,3-pinanediol phenyl boronate)- propenamide (3d)

white solid; 88% yield; mp 62-64 °C; $[\alpha]_D^{20}$ = -37.80 (c = 0.10, CHCl₃); IR (neat) 3334, 2923, 2359, 1693, 1579, 1447, 1344, 1161, 1077, 1040, 756 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.59 (s,

1H), 8.51-8.36 (m, 1H), 7.77 (d, *J* = 7.45 Hz, 1H), 7.47-7.40 (m, 1H), 7.14-6.97 (m, 1H), 5.35-5.16 (m, 1H), 4.49 (d, *J* = 8.59 Hz, 1H), 4.37-4.27 (m, 1H), 2.52-2.37 (m, 1H), 2.29-2.12 (m, 2H), 2.04-1.91 (m, 2H), 1.51 (s, 3H), 1.48-1.44 (m, 12H), 1.31 (s, 3H), 1.18 (d, *J* = 10.88 Hz, 1H), 0.89 (s, 3H); ¹³C NMR (125 MHz, CDCl₃, ppm): δ 170.9, 155.2, 144.3, 136.4, 132.9, 123.3, 119.5, 87.1, 79.9, 78.4, 51.2, 39.6, 38.3, 35.5, 28.8, 28.4, 27.0, 26.5, 24.1,19.5; MS (EI): m/z = 442 [M]⁺, HRMS m/z: [EI] calculated for C₂₄H₃₅BN₂O₅ [M]⁺: 442.2639; found 442.2633.

(S)-2-Amino-N-((+)-2,3-pinanediol phenyl boronate)-propanamide (4d)

white solid; 80% yield; mp 109-111 °C; $[\alpha]_D^{20}$ = -34.80 (c = 0.10, CHCl₃); IR (neat) 3228, 2980, 2886, 1620, 1482, 1448, 1369, 1166, 1054, 1012 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.32-8.27 (m, 1H), 7.78-7.71 (m, 1H), 7.45-7.37 (m, 1H), 7.10-7.04 (m, 1H), 4.48-4.44 (m, 1H), 3.63-3.53 (m, 1H), 2.46-2.33 (m, 1H), 2.25-2.18 (m, 1H), 2.14-2.07 (m, 1H), 2.02-1.86 (m, 2H), 1.49 (s, 3H), 1.38 (d, *J* = 12.60 Hz, 3H), 1.29 (s, 3H), 1.27-1.23 (m, 1H), 0.87 (s, 3H); ¹³C NMR (125 MHz, CDCl₃, ppm): δ 174.5, 143.4, 135.9, 132.0, 123.2, 119.3, 86.4, 78.1, 52.1, 51.3, 39.6, 38.5, 35.7, 28.9, 27.0, 26.2, 24.1, 21.5; MS (EI): m/z = 342 [M]⁺, HRMS m/z: [EI] calculated for C₁₉H₂₇BN₂O₃ [M]⁺: 342.2115; found [M]⁺: 342.2120.

(S)-2-Amino-N-((+)-2,3-pinanediol phenyl boronate)-2-phenylethanamide (3e)

Colorless solid. 90% yield; mp 66-68 °C; [α]_D²⁰ = +10.20 (c = 0.10, CHCl₃) ; IR (neat) 3345, 2932, 1694, 1482, 1447, 1343, 1160, 1076, 1051, 754 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.48 (s, 1H), 8.55-8.45 (m, 1H), 7.78-7.76 (m, 1H), 7.46-7.42 (m, 3H), 7.38-7.32 (m, 3H), 7.09-7.06 (m, 1H), 5.96-5.91 (m, 1H), 5.31-5.18 (m, 1H), 4.49-4.28 (m, 1H), 2.53-2.34 (m, 1H), 2.28-2.11 (m, 2H), 2.00-1.82 (m, 2H), 1.48 (s, 3H), 1.42 (s, 9H), 1.33 (s, 3H), 1.13-1.10 (m, 1H), 0.89 (s, 3H) ; ¹³C NMR

(125 MHz, CDCl₃, ppm): δ 168.5, 155.3, 144.3, 136.5, 136.4, 132.9, 129.0, 128.4, 128.3, 127.5, 123.3, 119.2, 87.2, 80.0, 78.3, 59.8, 51.4, 39.6, 39.4, 38.2, 35.4, 35.2, 28.8, 28.6, 28.4, 27.1, 26.7, 26.4, 24.1; MS (EI): m/z = 504 [M]⁺, HRMS m/z: [EI] calculated for C₂₉H₃₇BN₂O₅ [M]⁺: 504.2796; found 504.2796.

(S)-2-Amino-N-((+)-2,3-pinanediol phenyl boronate)-2-phenylethanamide (4e)

pale yellow liquid; 80% yield; mp 153 °C; $[\alpha]_D^{20}$ = +15.20 (c = 0.10, CHCl₃); IR (neat) 3286, 2920, 1685, 1607, 1476, 1447, 1344, 1160, 1076, 1040, 758 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.53-8.44 (m, 1H), 7.80-7.74 (m, 1H), 7.52-7.39 (m, 3H), 7.37-7.25 (m, 3H), 7.07-7.02 (m, 1H), 4.63 (s, 1H), 4.42-4.30 (m, 1H), 2.46-2.38 (m, 1H), 2.24-2.11 (m, 2H), 2.04-1.94 (m, 2H), 1.50 (s, 3H), 1.32 (s, 3H), 1.17 (d, *J* = 10.88 Hz, 1H), 0.89 (s, 3H) ; ¹³C NMR (125 MHz, CDCl₃, ppm): δ 171.8, 144.3, 141.1, 136.6, 132.8, 128.9, 128.1, 127.2, 122.9, 119.1, 87.2, 77.9, 61.2, 51.6, 39.4, 38.2, 35.3, 28.6, 27.3, 26.3, 24.1; MS (EI): m/z = 404 [M]⁺, HRMS m/z: [EI] calculated for C₂₄H₂₉BN₂O₃ [M]⁺: 404.2271; found [M]⁺: 404.2264.

(S)-2-Aminoboc-N-((+)-2,3-pinanediol phenyl boronate)-3-phenylpropanamide (3f)

transparent liquid; 80% yield; mp 153 °C; $[\alpha]_D^{20}$ = -50.80 (c = 0.10, CHCl₃) ; IR (neat) 3296, 2919, 1719, 1657, 1447, 1355, 1159, 1077, 1040, 758 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.59 (s, 1H), 8.51-8.42 (m, 1H), 7.81-7.71 (m, 1H), 7.53-7.38 (m, 1H), 7.32-7.12 (m, 5H), 7.12-7.04 (m, 1H), 5.11-4.98 (m, 1H), 4.60-4.33 (m, 2H), 3.29-3.04 (m, 2H), 2.44-2.30 (m, 1H), 2.25-2.13 (m, 2H), 1.95-1.74 (m, 2H), 1.44 (s, 3H), 1.41 (s, 9H), 1.27 (s, 3H), 1.08 (d, *J* = 10.88 Hz, 1H), 0.86 (s, 3H) ; ¹³C NMR (125 MHz, CDCl₃, ppm): δ 169.6, 155.2, 144.2, 136.4, 136.3, 132.9, 129.5, 128.6, 127.0, 123.3, 119.6, 86.8, 80.1, 78.4, 56.7, 51.2, 39.5, 38.9, 38.2, 35.4, 31.6, 28.6, 28.4, 28.1, 26.9, 26.3,

24.0; MS (EI): m/z = 518 [M]⁺, HRMS m/z: [EI] calculated for C₃₀H₃₉BN₂O₅ [M]⁺: 518.2952; found [M]⁺: 518.2960.

(S)-2-Amino-N-((+)-2,3-pinanediol phenyl boronate)-3-phenylpropanamide (4f)

Colorless solid; 80% yield; mp 53-55 °C; $[\alpha]_D^{20} = -46.80$ (c = 0.10, CHCl₃); IR (neat) 3262, 2918, 1676, 1605, 1478, 1447, 1345, 1160, 1076, 1040, 759 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, ppm): δ 10.46 (s, 1H), 8.46-8.38 (m, 1H), 7.80-7.72 (m, 1H), 7.48-7.44 (m, 1H), 7.34-7.29 (m, 2H), 7.27-7.20 (m, 3H), 7.12-7.05 (m, 1H), 4.47-4.40 (m, 1H), 3.77-3.70 (m, 1H), 3.38-3.30 (m, 1H), 2.82-2.76 (m, 1H), 2.46-2.35 (m, 1H), 2.25-2.17 (m, 1H), 2.12-2.07 (m, 1H), 1.97-1.90 (m, 2H), 1.48 (s, 3H), 1.29 (s, 3H), 1.21 (d, *J* = 10.88 Hz, 1H), 0.87 (s, 3H); ¹³C NMR (125 MHz, CDCl₃, ppm): δ 173.8, 143.5, 138.1, 136.5, 132.1, 129.3, 128.8, 126.9, 123.1, 119.8, 86.4, 78.3, 57.7, 51.6, 41.5, 39.5, 38.3, 35.2, 29.0, 27.1, 26.4, 24.1; MS (EI): m/z = 418 [M]⁺, HRMS m/z: [EI] calculated for C₂₅H₃₁BN₂O₃ [M]⁺: 418.2428; found [M]⁺: 418.2431;

(S)-2-N-Boc pyrrolidine-N-((+)-2,3-pinanediol phenyl boronate)-carboxamide (3g)

transparent liquid; 80% yield; mp 153 °C; $[\alpha]_D^{20} = -133.80$ (c = 0.10, CHCl₃); IR (neat) 3329, 2931, 2868, 1687, 1608, 1475, 1446, 1345, 1158, 1077, 1030, 754 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, ppm): δ 9.88 (s, 1H), 8.66 (d, *J* = 8.59 Hz, 1H), 7.78 (d, *J* = 7.45 Hz, 1H), 7.46 (t, *J* = 8.0 Hz, 1H), 7.07 (t, *J* = 8.0 Hz, 1H), 4.60 (d, *J* = 8.02 Hz, 1H), 4.31-4.21 (m, 4H), 3.63-3.49 (m, 2H), 2.55-2.45 (m, 1H), 2.38-2.28 (m, 1H), 2.28-2.11 (m, 3H), 2.00-1.84 (m, 1H), 1.42 (s, 3H), 1.34 (s, 9H), 1.31 (s, 3H), 1.15 (d, *J* = 10.31 Hz, 1H), 0.88 (s, 3H); ¹³C NMR (125 MHz, CDCl₃, ppm): δ 172.4, 144.3, 136.4, 133.2, 123.3, 118.9, 86.1, 80.9, 78.7, 61.9, 51.3, 47.6, 39.2, 37.7, 35.3, 32.2, 28.9, 28.5, 27.2, 25.8,

24.0, 23.5; MS (EI): m/z = 468 [M]⁺, HRMS m/z: [EI] calculated for C₂₆H₃₇BN₂O₅ [M]⁺: 468.2796; found [M]⁺: 468.2803;

(S)-2-pyrrolidine-N-((+)-2,3-pinanediol phenyl boronate)-carboxamide (4g)

Colorless solid; 80% yield; mp 64-66 °C; $[\alpha]_D^{20} = -38.80$ (c = 0.10, CHCl₃); IR (neat) 3319, 3168, 2917, 1654, 1517, 1447, 1359, 1283, 1078, 1041, 765 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, ppm): δ 10.74 (s, 1H), 8.41 (d, *J* = 8.59 Hz, 1H), 7.80-7.73 (m, 1H), 7.45-7.36 (m, 1H), 7.13-7.02 (m, 1H), 4.52-4.17 (m, 1H), 3.93-3.82 (m, 1H), 3.11-2.95 (m, 2H), 2.48-2.36 (m, 1H), 2.29-2.09 (m, 3H), 2.07-1.89 (m, 3H), 1.85-1.68 (m, 2H), 1.49 (s, 3H), 1.31 (s, 3H), 1.29-1.25 (m, 1H), 0.89 (s, 3H); ¹³C NMR (125 MHz, CDCl₃, ppm): δ 174.6, 143.6, 136.0, 132.0, 123.0, 118.8, 86.3, 78.0, 60.6, 51.7, 47.8, 39.7, 38.3, 35.7, 31.1, 28.9, 27.2, 26.6, 26.2, 24.3; MS (EI): m/z = 368 [M]⁺, HRMS m/z: [EI] calculated for C₂₁H₂₉BN₂O₃ [M]⁺: 368.2271; found [M]⁺: 368.2266;

(S)-2-Aminomethyl-N-((+)-2,3-pinanediol phenyl boronate)-3,3-dimethylbutanamide (4h)

pale liquid; 84% yield; $[\alpha]_D^{20}$ = +80.00 (c = 0.10, CHCl₃); IR (neat) 2923, 2868, 1694, 1476, 1446, 1342, 1162, 1119, 1078, 1041, 757 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, ppm): δ 10.2 (s, 1H), 8.57 (d, *J* = 8.59 Hz, 1H), 7.81-7.76 (m, 1H), 7.47-7.40 (m, 1H), 7.11-7.04 (m, 1H), 4.47-4.42 (m, 1H), 2.72 (s, 1H), 2.47-2.39 (m, 1H), 2.37 (s, 3H), 2.26-2.19 (m, 1H), 2.17-2.12 (m, 1H), 2.03-1.92 (m, 2H), 1.56 (s, 1H), 1.50 (s, 3H), 1.32 (s, 3H), 1.24 (d, *J* = 10.88 Hz, 1H), 1.03 (s, 9H), 0.89 (s, 3H); ¹³C NMR (125 MHz, CDCl₃, ppm): δ 172.2, 144.2, 136.2, 132.4, 123.1, 119.1, 86.9, 78.0, 76.2, 51.6, 39.8, 38.3, 36.0, 35.4, 34.0, 29.0, 27.4, 27.2, 26.6, 24.1; MS (EI): m/z = 398 [M]⁺, HRMS m/z: [EI] calculated for C₂₃H₃₅BN₂O₃ [M]⁺: 398.2741; found [M]⁺: 398.2741;

4 ¹H NMR and ¹³C NMR Spectra

(S)-2-Amino-N-(-pinacol phenyl boronate)-3,3-dimethylbutanamide

¹H-NMR

(S)-2-Aminoboc-N-((+)-2,3-pinanediol phenyl boronate)-3,3-dimethylbutanamide

(S)-2-Amino-N-((+)-2,3-pinanediol phenyl boronate)-3,3-dimethylbutanamide

(S)-2-Aminoboc-N-((+)-2,3-pinanediol phenyl boronate)-3-methyl butanamide

¹H-NMR

(S)-2-Amino-N-((+)-2,3-pinanediol phenyl boronate)-3-methyl butanamide

(S)-2-Aminoboc-N-((+)-2,3-pinanediol phenyl boronate)- propanamide

¹H-NMR

(S)-2-Amino-N-((+)-2,3-pinanediol phenyl boronate)-propanamide

¹H-NMR

(S)-2-Amino-N-((+)-2,3-pinanediol phenyl boronate)-2-phenylethanamide

(S)-2-Aminoboc-N-((+)-2,3-pinanediol phenyl boronate)-3-phenylpropanamide

¹H-NMR

(S)-2-Amino-N-((+)-2,3-pinanediol phenyl boronate)-3-phenylpropanamide

(S)-2-NBocpyrrolidine-N-((+)-2,3-pinanediol phenyl boronate)-carboxamide.

¹H-NMR

(S)-2-pyrrolidine-N-((+)-2,3-pinanediol phenyl boronate)-carboxamide.

(S)-2-Aminomethyl-N-((+)-2,3-pinanediol phenyl boronate)-3,3-dimethylbutanamide

¹H-NMR

H¹ NMR and Mass data of the Aldol products

2-[Hydroxy-(4-nitrophenyl)-methyl]-cyclohexan-1-one (7a)

Chemical Formula: C₁₃H₁₅NO₄ Exact Mass: 249.1001

MS (EI) *m/z* : 249 [M]⁺,

HRMS m/z: [EI] calculated for $C_{13}H_{15}N_1O_4$ [M]⁺: 249.1001; Found [M]⁺: 249.1006.

Chemical Formula: C₁₃H₁₅NO₄ Exact Mass: 249.1001

MS (EI) *m/z* : 249 [M]⁺,

HRMS m/z: [EI] calculated for $C_{13}H_{15}N_1O_4$ [M]⁺: 249.1001, Found [M]⁺: 249.1006.

2-[Hydroxy-(3-nitrophenyl)-methyl]-cyclohexan-1-one (7c)

Chemical Formula: C₁₃H₁₅NO₄ Exact Mass: 249.1001

MS (EI) *m/z* : 249 [M]⁺,

HRMS m/z: [EI] calculated for $C_{13}H_{15}N_1O_4$ [M]⁺: 249.1001, Found [M]⁺: 249.1005.

OH C

Chemical Formula: C₁₃H₁₅ClO₂ Exact Mass: 238.0761

MS (EI) *m/z* : 238 [M]⁺,

HRMS m/z: [EI] calculated for $C_{13}H_{15}ClO_2$ [M]+: 238.0761; Found 238.0752 and [M+2] 240.0721

2-[Hydroxy-(4-bromophenyl)-methyl]-cyclohexan-1-one (7e)

Chemical Formula: C₁₃H₁₅BrO₂ Exact Mass: 282.0255

MS (EI) *m/z* : 282 [M]⁺,

HRMS m/z: [EI] calculated for $C_{13}H_{15}BrO_2$ [M]⁺: 282.0255; Found [M]⁺: 282.0259 and [M+2] 284.0231

2-[Hydroxy-(4-cyanophenyl)-methyl]-cyclohexan-1-one (7f)

Chemical Formula: C₁₄H₁₅NO₂ Exact Mass: 229.1103

MS (EI) *m/z* : 229 [M]⁺,

HRMS m/z: [EI] calculated for $C_{14}H_{15}NO_2$ [M]⁺: 229.1103, Found [M]⁺: 229.1107

2-[Hydroxy-(3-methoxyphenyl)-methyl]-cyclohexan-1-one (7g)

O OH OCH₃

Chemical Formula: C₁₄H₁₈O₃ Exact Mass: 234.1256

MS (EI) *m/z* : 234 [M]⁺,

HRMS m/z: [EI] calculated for $C_{14}H_{18}O_3$ [M]⁺: 234.1256, Found [M]⁺: 234.1251

2-[Hydroxy-(4-methylphenyl)-methyl]-cyclohexan-1-one (7h)

O OH Chemical Formula: C₁₄H₁₈O₂ Exact Mass: 218.1307

MS (EI) *m/z* : 218 [M]⁺,

HRMS m/z: [EI] calculated for $C_{14}H_{18}O_2$ [M]⁺: 218.1307, Found [M+1]⁺: 218.1396

2-[Hydroxy-(phenyl)-methyl]-cyclohexan-1-one (7i)

Chemical Formula: C₁₃H₁₆O₂ Exact Mass: 204.1150

MS (EI) *m/z* : 204 [M]⁺,

HRMS m/z: [EI] calculated for $C_{14}H_{18}O_3$ [M]⁺: 204.1150, Found [M]⁺: 204.1151
2-[Hydroxy-(napthyl)-methyl]-cyclohexan-1-one (7j)

MS (EI) *m/z* : 254 [M]⁺,

HRMS m/z: [EI] calculated for $C_{14}H_{18}O_3$ [M]⁺: 254.1307, Found [M]⁺: 254.1315

Chemical Formula: C₁₂H₁₃NO₄ Exact Mass: 235.0845

MS (EI) *m/z* : 254 [M]⁺,

HRMS m/z: [EI] calculated for C₁₂H₁₃NO₄ [M]⁺: 235.0845, Found [M]⁺: 235.0837

2-[Hydroxy-(3-nitrophenyl)-methyl]-cyclopentan-1-one (7l)

NO₂

Chemical Formula: C₁₂H₁₃NO₄ Exact Mass: 235.0845

MS (EI) *m/z* : 235 [M]⁺,

HRMS m/z: [EI] calculated for C₁₂H₁₃NO₄ [M]⁺: 235.0845, Found [M]⁺: 235.0849

2-[Hydroxy-(4-nitrophenyl)-methyl]-cycloheptan-1-one(7m)

MS (EI) *m/z* : 263 [M]⁺,

HRMS m/z: [EI] calculated for $C_{14}H_{17}NO_4$ [M]⁺: 263.1158, Found [M]⁺: 263.1155

HRMS m/z: [EI] calculated for C₁₄H₁₇NO₄ [M]⁺: 263.1158, Found [M]⁺: 263.1153

2-[Hydroxy-(4-nitrophenyl)-methyl]-dihydro-2H-pyran-4-one (70)

MS (EI) *m/z* : 251 [M]⁺,

HRMS m/z: [EI] calculated for $C_{12}H_{13}NO_5$ [M]⁺: 251.0794, Found [M]⁺: 251.0796

3-Hydroxy-3-(4-nitrophenyl)-1-phenylpropan-1-one (7p)

QН Ο NO₂

Chemical Formula: C₁₅H₁₃NO₄ Exact Mass: 271.0845

MS (EI) *m/z* : 271 [M]⁺,

HRMS m/z: [EI] calculated for $C_{15}H_{13}NO_4$ [M]⁺: 271.0845, Found [M]⁺: 271.0848

3-Hydroxy-3-(4-nitrophenyl)-1-propylpropan-1-one (7q)

MS (EI) *m/z* : 237 [M]⁺,

HRMS m/z: [EI] calculated for C₁₂H₁₅NO₄ [M]⁺: 237.1001, Found [M]⁺: 237.1004

5. HPLC SPECTRA FOR ALDOL PRODUCTS

2-[Hydroxy-(4-nitrophenyl)-methyl]-cyclohexan-1-one (**7a**): *AD-H column, n-hexane/iso-propanol* = 90/10, flow rate = 1.0 mL/min, λ =254 nm, 94% ee

2-[Hydroxy-(3-nitrophenyl)-methyl]-cyclohexan-1-one (**7b**): *AD-H column, n-hexane/iso-propanol* = 90/10, flow rate = 1.0 mL/min, $\lambda = 254 \text{ nm}$, 57% ee

2-[Hydroxy-(2-nitrophenyl)-methyl]-cyclohexan-1-one (**7c**): *AD-H column, n-hexane/iso-propanol = 90/10, flow rate = 1.0 mL/min,* λ *=254 nm,* 44% *ee*

2-[Hydroxy-(4-chlorophenyl)-methyl]-cyclohexan-1-one (**7d**): *AD-H column, n-hexane/iso-propanol* = 90/10, flow rate = 1.0 mL/min, $\lambda = 254 \text{ nm}$, 54% ee

2-[Hydroxy-(4-bromophenyl)-methyl]-cyclohexan-1-one (**7e**): *AD-H column, n-hexane/iso-propanol* = 90/10, flow rate = 1.0 mL/min, $\lambda = 254 \text{ nm}$, 57% ee

2-[Hydroxy-(4-cyanophenyl)-methyl]-cyclohexan-1-one (**7f**): *AD-H* column, *n*-hexane/iso-propanol = 90/10, flow rate = 1.0 mL/min, λ =254 nm, 65% ee

2-[Hydroxy-(3-methoxyphenyl)-methyl]-cyclohexan-1-one (**7**g): *AD-H column, n-hexane/iso-propanol* = 90/10, flow rate = 1.0 mL/min, λ =254 nm, 29% ee

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	23.91	8614209	31.2178	295362	14872.7	1.162	4.032
2	27.32	4258499	15.4327	125999	14455.3	1.174	13.977
3	43.55	5251424	19.0311	100274	15200	1.091	3.192
4	48.42	9469792	34.3184	155599	13935.1	1.199	****
		27593924	100	677234			

2-[Hydroxy-(4-methylphenyl)-methyl]-cyclohexan-1-one (**7h**): *AS-H column, n-hexane/iso-propanol* = 90/10, flow rate = 1.0 mL/min, $\lambda = 254 \text{ nm}$, 63% ee

2-[Hydroxy-(phenyl)-methyl]-cyclohexan-1-one (**7i**): *OD-H column, n-hexane/iso-propanol* = 97/3, flow rate = 0.8mL/min, λ =254 nm, 87% ee

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	21.74	492189	14.8773	15896	10455	1.281	3.439
2	24.83	598316.3	18.0852	17391	11054.5	1.31	5.787
3	31.06	2069215	62.5457	46952	10527.3	1.288	10.13
4	45.3	148602.2	4.4918	2528	12828	1.155	****
		3308323	100	82767			

2-[Hydroxy-(napthyl)-methyl]-cyclohexan-1-one (**7**j): *AS-H column, n-hexane/iso-propanol* = 98/2, flow rate = 1.0 mL/min, λ =254 nm, 69% ee

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	34.29	127028.2	13.8648	1790	5281.1	****	1.268
2	36.42	295663.4	32.2708	5359	9855	****	5.792
3	48.33	417777.2	45.5992	4199	5473.8	1.297	2.945
4	55.14	75725.4	8.2652	1022	11989.3	1.168	****
		916194.2	100	12370			

2-[Hydroxy-(4-nitrophenyl)-methyl]-cyclopentan-1-one (**7k**): *AD-H column, n-hexane/iso-propanol* = 90/10, flow rate = 0.5 mL/min, λ =265 nm, 60% ee

No

2-[Hydroxy-(4-nitrophenyl)-methyl]-cycloheptan-1-one(**7m**): *AD-H* column, *n*-hexane/iso-propanol = 90/10, flow rate = 1.0 mL/min, λ =254 nm, 14% ee

912611.7 100 16746 3-Hydroxy-3-(4-nitrophenyl)-1-phenylpropan-1-one (**7p**): *AD-H column, n-hexane/iso-propanol = 90/10, flow rate = 1.0 mL/min,* λ *=254 nm,* 94% *ee*

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	37.12	293439	97.0904	3873	5178.9	0.991	4.288
2	44.56	8793.8	2.9096	164	15982.2	1.022	****
		302232.8	100	4037			

3-Hydroxy-3-(4-nitrophenyl)-1-propylpropan-1-one (**7q**): *AS-H column, n-hexane/iso-propanol* = 70/30, flow rate = 0.6 mL/min, λ =254 nm.

3-Hydroxy-3-(4-nitrophenyl)-2,3-dimethylpropan-1-one (**7r**): *AS-H column, n-hexane/iso-propanol* = 90/10, flow rate = 1.0 mL/min, $\lambda = 254 \text{ nm}$

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	66.82	3590435	47.1853	43595	14871.6	1.209	2.792
2	73.28	4018792	52.8147	44329	14505.8	1.221	****
		7609227	100	87924			

6. Theoretical Calculations

The DFT method (at the B3LYP/6-31G(d) level of theory) was used to perform the conformational analysis with Gaussian 16 program package. The Gas phase geometry optimizations were performed using the B3LYP hybrid density functional and the 6-31G(d) basis set as implemented in the Gaussian 16. Vibrational mode analysis was performed for all structures to ensure that they have zero imaginary frequency.

1) Gaussian 16, Revision A.03,

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

Table S1. Cartesian coordinates (Angstroms) for I-1 in gas phase.

Point Group:	C1
Imaginary Fre	eq: 0
Total energy	= -1451.8108 hartree
	<u>١</u>

Symbol	Х	Y	Z
С	-1.6391	2.398025	-0.6255
С	-0.34922	2.964355	-0.43233
С	-0.14475	4.297524	-0.83399
С	-1.15548	5.062136	-1.40685
С	-2.41269	4.48404	-1.58879
С	-2.662	3.168441	-1.20627
Н	0.840728	4.730491	-0.68639
Н	-0.96824	6.089158	-1.70763
Н	-3.21835	5.06114	-2.03629
Н	-3.63564	2.723825	-1.35198
В	0.866687	2.221639	0.182829
0	0.856929	0.908032	0.589817

0	2.090839	2.82013	0.357701
С	2.163409	0.552592	1.125952
С	3.020069	1.861102	0.898201
Н	3.354585	2.255949	1.863968
С	1.932908	0.220714	2.600973
Н	1.219148	-0.60582	2.68319
Н	2.853889	-0.0705	3.110332
Н	1.509858	1.087628	3.120604
С	2.708244	-0.62398	0.302201
Н	2.082501	-1.5109	0.45238
С	4.241131	1.707032	-0.05513
Н	4.126448	2.454966	-0.84742
Н	5.163268	1.957795	0.482479
С	4.353455	0.306862	-0.67606
Н	5.191974	0.256439	-1.38129
С	2.95093	-0.14283	-1.15554
Н	2.980045	-0.96717	-1.87051
Н	2.282097	0.62653	-1.55078
С	4.273674	-0.80589	0.424279
С	4.70289	-2.18501	-0.10682
Н	5.789056	-2.21458	-0.25958
Н	4.449053	-2.9699	0.616619
Н	4.228661	-2.44837	-1.05638
С	5.018027	-0.57159	1.744245
Н	4.767694	-1.34433	2.481661
Н	6.100387	-0.6306	1.570834
Н	4.820837	0.400956	2.202587
Ν	-1.86647	1.067949	-0.21451
Н	-1.07226	0.558628	0.172652
С	-3.0144	0.32479	-0.31042
0	-4.06365	0.69364	-0.83021
С	-2.92737	-1.08145	0.333842
Н	-3.51567	-1.72443	-0.33211
С	-3.64621	-1.1325	1.734625
С	-2.95318	-0.20931	2.758131

Н	-3.00193	0.840016	2.449352
Н	-3.44789	-0.29426	3.732644
Н	-1.89602	-0.46084	2.90786
С	-3.63135	-2.58878	2.251108
Н	-4.20764	-2.65813	3.180748
Н	-4.08658	-3.27	1.522657
Н	-2.6244	-2.96201	2.469279
С	-5.12176	-0.70483	1.593677
Н	-5.62265	-0.8021	2.564494
Н	-5.22201	0.327114	1.253156
Н	-5.65167	-1.33983	0.874808
Ν	-1.54128	-1.56097	0.423518
Н	-1.29551	-1.86196	1.358632
С	-1.01229	-2.44109	-0.5475
С	-0.22146	-3.4757	-0.20374
С	-1.31925	-2.10597	-1.99335
С	0.453765	-4.39305	-1.1937
Н	-0.03729	-3.67006	0.854257
С	-0.35105	-2.79319	-2.96812
Н	-2.35203	-2.40147	-2.23186
Н	-1.27922	-1.01865	-2.1297
С	-0.14916	-4.26682	-2.60029
Н	0.3759	-5.43307	-0.84672
Н	1.53545	-4.18033	-1.23622
Н	-0.72844	-2.69414	-3.99297
Н	0.618626	-2.27669	-2.93657
Н	0.494562	-4.76486	-3.33582
Н	-1.1202	-4.78078	-2.62761

 Table S2. Cartesian coordinates (Angstroms) for I-2 in gas phase.

 Point Group: C1

 Imaginary Freq: 0

 Total energy = -1451.8010 hartree

 Symbol
 X
 Y
 Z

 C
 0.855865
 2.24676
 0.822282

 C
 -0.49461
 2.431446
 0.458758

С	-0.90956	3.758068	0.224152
С	-0.069	4.856253	0.387647
С	1.250408	4.646836	0.788618
С	1.708558	3.350335	0.992273
Н	-1.93716	3.920128	-0.08737
Н	-0.43884	5.861756	0.207345
Н	1.92741	5.485316	0.929502
Н	2.74567	3.181274	1.275473
В	-1.63858	1.362443	0.355989
0	-2.6054	1.509058	-0.61069
0	-1.9745	0.432226	1.313743
С	-3.75681	0.701434	-0.2569
С	-3.23621	-0.16782	0.949088
Н	-3.89684	-0.03284	1.812063
С	-4.85716	1.687013	0.146721
Н	-5.0484	2.380201	-0.67929
Н	-5.79345	1.181318	0.396257
Н	-4.54033	2.273827	1.0167
С	-4.13905	-0.16613	-1.46581
Н	-4.53654	0.464374	-2.27038
С	-3.08187	-1.68743	0.647239
Н	-2.02021	-1.93306	0.723137
Н	-3.60449	-2.26773	1.417984
С	-3.57939	-2.08504	-0.75261
Н	-3.47253	-3.1658	-0.91032
С	-2.95519	-1.11766	-1.78959
Н	-2.99112	-1.49941	-2.8121
Н	-1.94732	-0.75049	-1.58852
С	-4.9742	-1.44912	-1.07392
С	-5.62777	-2.07473	-2.31899
Н	-5.98816	-3.08668	-2.09407
Н	-6.49294	-1.47956	-2.63806
Н	-4.94733	-2.14855	-3.17167
С	-6.03629	-1.42368	0.032466
Н	-6.90858	-0.83052	-0.27008

Н	-6.39243	-2.44465	0.223129
Н	-5.68008	-1.02602	0.985849
Ν	1.451966	0.981111	1.026965
Н	2.403756	0.998669	1.385835
С	1.179893	-0.19619	0.386624
0	0.205734	-0.40156	-0.33015
С	2.236	-1.29712	0.647498
Н	2.135906	-1.97378	-0.21148
С	1.930634	-2.15739	1.928843
С	2.172283	-1.37351	3.235849
Н	1.526869	-0.49204	3.298812
Н	1.944884	-2.01522	4.094906
Н	3.211048	-1.04145	3.347846
С	2.831569	-3.41203	1.902769
Н	2.612884	-4.04802	2.768099
Н	2.65585	-4.00431	0.997187
Н	3.901312	-3.17394	1.941135
С	0.461422	-2.618	1.900499
Н	0.278412	-3.32046	2.7222
Н	-0.22654	-1.77647	2.01584
Н	0.219222	-3.12529	0.960082
Ν	3.590429	-0.71363	0.715897
Н	4.152727	-1.18712	1.415006
С	4.341143	-0.57549	-0.4855
С	5.625384	-0.96679	-0.55162
С	3.637485	0.100501	-1.64452
С	6.505532	-0.78116	-1.76251
Н	6.07936	-1.44002	0.320657
С	4.618895	0.581154	-2.72579
Н	2.902006	-0.58828	-2.08601
Н	3.05654	0.952813	-1.27189
С	5.68545	-0.47736	-3.02427
Н	7.112423	-1.68404	-1.91743
Н	7.22931	0.031849	-1.58606
Н	4.063373	0.844328	-3.63361

Н	5.113096	1.499937	-2.38068
Н	6.344619	-0.14327	-3.83481
Н	5.19555	-1.39816	-3.37029

Table S3. Cartesian coordinates (Angstroms) for **I-A** in gas phase. Point Group: C1

Imaginary	Freq: 0					
Total energy = -1872.6596 hartree						
Symbol	Х	Y	Z			
С	-0.88121	-2.4083	0.617541			
С	-2.24912	-2.63383	0.928211			
С	-2.61503	-3.90409	1.40783			
С	-1.68285	-4.92251	1.582031			
С	-0.34506	-4.67383	1.271949			
С	0.063569	-3.43071	0.792977			
Н	-3.65971	-4.08152	1.647522			
Н	-1.99221	-5.89465	1.955132			
Н	0.398817	-5.45566	1.402825			
Н	1.100536	-3.24081	0.557609			
В	-3.37136	-1.56833	0.787131			
0	-3.17144	-0.28312	0.325356			
0	-4.68018	-1.81431	1.108992			
С	-4.42678	0.46149	0.399013			
С	-5.47075	-0.63891	0.839691			
Н	-5.93002	-0.34778	1.790081			
С	-4.20569	1.550357	1.449182			
Н	-3.36006	2.181214	1.155884			
Н	-5.08373	2.188431	1.570641			
Н	-3.97035	1.09872	2.419225			
С	-4.74063	1.005385	-1.00207			
Н	-4.00431	1.767433	-1.28414			
С	-6.58079	-0.96629	-0.20128			
Н	-6.51271	-2.03729	-0.42181			
Н	-7.56668	-0.80008	0.248463			
С	-6.44833	-0.16074	-1.50228			
Н	-7.22846	-0.4431	-2.21928			

С	-4.97038	-0.19252	-1.96511
Н	-4.83845	0.078144	-3.01405
Н	-4.40171	-1.10695	-1.77499
С	-6.26587	1.367386	-1.20582
С	-6.4549	2.233384	-2.46381
Н	-7.51517	2.273492	-2.74252
Н	-6.12361	3.261868	-2.27396
Н	-5.89971	1.864035	-3.33043
С	-7.10585	1.994244	-0.08669
Н	-6.78611	3.023488	0.11742
Н	-8.15702	2.039575	-0.39923
Н	-7.07675	1.444476	0.857541
Ν	-0.52105	-1.13241	0.12723
Н	-1.30175	-0.4911	0.026042
С	0.698882	-0.62603	-0.20678
0	1.752605	-1.26511	-0.10129
С	0.66761	0.824709	-0.74401
Н	-0.30292	1.262219	-0.47976
С	0.741025	0.884265	-2.31417
С	2.090286	0.380054	-2.86165
Н	2.280645	-0.65919	-2.57649
Н	2.082818	0.43166	-3.95715
Н	2.929485	0.987061	-2.50932
С	0.534375	2.351745	-2.73872
Н	0.583808	2.440058	-3.83069
Н	-0.44696	2.723316	-2.41682
Н	1.298638	2.999018	-2.30118
С	-0.39321	0.028973	-2.91546
Н	-0.41766	0.156936	-4.00382
Н	-0.25855	-1.03943	-2.71411
Н	-1.37583	0.325094	-2.52573
Ν	1.682912	1.643211	-0.11863
Н	2.63968	1.394381	-0.36718
С	1.559115	2.064602	1.214408
С	0.458232	1.93386	1.983367

2.813958	2.750327	1.724164
0.347665	2.477407	3.389426
-0.42136	1.419538	1.604896
2.562511	3.600586	2.975482
3.576383	1.98595	1.933962
3.231458	3.367561	0.918719
1.713572	2.832131	3.993002
-0.15988	1.742169	4.030381
-0.29888	3.372056	3.404396
3.520491	3.905124	3.41524
2.037362	4.523531	2.691222
1.58318	3.417156	4.912359
2.238592	1.908342	4.273803
7.429198	0.727756	-0.72564
8.810212	0.569424	-0.80893
9.372495	-0.70745	-0.72758
8.550917	-1.82526	-0.56267
7.168178	-1.67054	-0.47887
6.601701	-0.39093	-0.5605
6.970006	1.708904	-0.78604
9.448901	1.439097	-0.93699
10.45044	-0.83116	-0.79248
8.988368	-2.81788	-0.49911
6.521773	-2.53154	-0.35045
5.128716	-0.17679	-0.47589
4.616262	0.936545	-0.54265
4.435026	-1.30324	-0.32516
3.460152	-1.10817	-0.26546
	2.813958 0.347665 -0.42136 2.562511 3.576383 3.231458 1.713572 -0.15988 -0.29888 3.520491 2.037362 1.58318 2.238592 7.429198 8.810212 9.372495 8.550917 7.168178 6.601701 6.970006 9.448901 10.45044 8.988368 6.521773 5.128716 4.616262 4.435026 3.460152	2.8139582.7503270.3476652.477407-0.421361.4195382.5625113.6005863.5763831.985953.2314583.3675611.7135722.832131-0.159881.742169-0.298883.3720563.5204913.9051242.0373624.5235311.583183.4171562.2385921.9083427.4291980.7277568.8102120.5694249.372495-0.707458.550917-1.825267.168178-1.670546.601701-0.390936.9700061.7089049.4489011.43909710.45044-0.831168.988368-2.817886.521773-2.531545.128716-0.176794.6162620.9365454.435026-1.303243.460152-1.10817

 Table S4. Cartesian coordinates (Angstroms) for I-A' in gas phase.

 Point Group: C1

 Imaginary Freq: 0

 Total energy = -1872.6558 hartree

 Symbol
 X
 Y
 Z

 C
 -0.91509
 -2.31679
 0.807286

 C
 -2.28741
 -2.51931
 1.11485

С	-2.66179	-3.75332	1.676057
С	-1.73398	-4.75824	1.932111
С	-0.39207	-4.53312	1.622053
С	0.025005	-3.32639	1.06387
Н	-3.70998	-3.91331	1.912539
Н	-2.05004	-5.70211	2.367047
Н	0.348652	-5.30489	1.815445
Н	1.064602	-3.15612	0.825607
В	-3.40925	-1.47049	0.878768
0	-3.20372	-0.21317	0.347117
0	-4.72585	-1.70772	1.174657
С	-4.46843	0.518967	0.325311
С	-5.51677	-0.55962	0.807778
Н	-6.00536	-0.2113	1.723782
С	-4.29565	1.681905	1.302514
Н	-3.45573	2.309721	0.986837
Н	-5.18845	2.308361	1.358511
Н	-4.07692	1.302558	2.306779
С	-4.73842	0.957438	-1.12128
Н	-3.99677	1.702362	-1.43374
С	-6.59388	-0.96459	-0.2403
Н	-6.51795	-2.04856	-0.38001
Н	-7.5934	-0.76945	0.165597
С	-6.42195	-0.25521	-1.5916
Н	-7.17602	-0.59504	-2.31148
С	-4.92909	-0.30907	-2.00161
Н	-4.76321	-0.11404	-3.06242
Н	-4.36229	-1.20298	-1.72708
С	-6.2577	1.29188	-1.40174
С	-6.40865	2.062263	-2.72536
Н	-7.45908	2.073472	-3.04145
Н	-6.08967	3.104499	-2.60045
Н	-5.82249	1.635006	-3.54358
С	-7.13822	1.992156	-0.36005
Н	-6.8293	3.035235	-0.21916
Н	-8.17803	2.008881	-0.71097
---	----------	----------	----------
Н	-7.14025	1.511208	0.621458
Ν	-0.54477	-1.07458	0.242687
Н	-1.31889	-0.43005	0.116646
С	0.671143	-0.62382	-0.1816
0	1.708028	-1.29317	-0.10021
С	0.654597	0.814579	-0.74553
Н	-0.32751	1.244523	-0.52637
С	0.779308	0.856736	-2.31034
С	2.159988	0.388908	-2.80833
Н	2.366279	-0.64592	-2.51981
Н	2.19255	0.444999	-3.90321
Н	2.967082	1.017544	-2.42081
С	0.545234	2.312589	-2.75861
Н	0.641947	2.394963	-3.8478
Н	-0.46175	2.655335	-2.4862
Н	1.269001	2.985107	-2.29095
С	-0.31048	-0.04153	-2.93016
Н	-0.30353	0.06044	-4.02155
Н	-0.15212	-1.10107	-2.69915
Н	-1.31323	0.23504	-2.57862
Ν	1.654252	1.647784	-0.08929
Н	2.602771	1.3024	-0.23736
С	1.477762	2.094458	1.242833
С	2.507121	2.109219	2.111305
С	0.1287	2.692656	1.592713
С	2.469081	2.776583	3.46376
Н	3.450494	1.660699	1.806081
С	0.002457	3.046693	3.083633
Н	-0.03139	3.586629	0.970104
Н	-0.68465	2.001313	1.33387
С	1.27152	3.725321	3.605098
Н	3.405428	3.328248	3.630642
Н	2.432474	2.017716	4.263623
Н	-0.87676	3.685936	3.23423

Н	-0.17355	2.127924	3.660507
Н	1.144629	4.032337	4.650973
Н	1.458249	4.638967	3.023325
С	7.431869	0.506109	-0.58982
С	8.807884	0.321077	-0.69754
С	9.335552	-0.97152	-0.7604
С	8.484401	-2.07841	-0.71502
С	7.106569	-1.89699	-0.60694
С	6.574869	-0.60155	-0.54417
Н	6.998852	1.499671	-0.53928
Н	9.469602	1.182233	-0.7325
Н	10.4096	-1.11604	-0.84448
Н	8.89498	-3.08331	-0.76364
Н	6.437345	-2.74935	-0.57049
С	5.108595	-0.35792	-0.42904
0	4.624467	0.767656	-0.37314
0	4.383194	-1.47585	-0.39712
Н	3.418528	-1.25015	-0.30647

Table S5. Cartesian coordinates (Angstroms) for **6a** in gas phase. Point Group: C1 Imaginary Freq: 0

Total	ener	gy =	-550.0714 hartree	
Svm	hol	Х	V	7

Symbol	Х	Y	Z
С	1.705107	0.22009	-2.1E-05
С	1.101116	-1.04673	0.000034
С	-0.28321	-1.15924	0.000031
С	-1.04631	0.010139	-5E-06
С	-0.47394	1.280261	-5.1E-05
С	0.914902	1.376822	-6.9E-05
Н	1.73579	-1.927	0.000081
Н	-0.78105	-2.12095	0.000049
Н	-1.11183	2.155192	-6.2E-05
Н	1.389592	2.355022	-0.00013
Ν	-2.51864	-0.10282	0.000003
С	3.18703	0.33683	-1.9E-05

Н	3.572977	1.37923	-0.0001
0	3.945275	-0.61132	0.000062
0	-3.00166	-1.23338	-0.00014
0	-3.16901	0.940845	0.000166