Supplementary Materials

Enhanced Adsorption Capacity of Activated Carbon over Thermal Oxidation Treatment for Methylene Blue Removal: Kinetic, Equilibrium, Thermodynamic, and Reusability Studies

Irwan Kurnia^{*, a, b}, Surachai Karnjanakom^c, Irkham Irkham^{a, b}, Haryono Haryono^a, Yohanes Andre Situmorang^d, Antonius Indarto^{d, e}, Atiek Rostika Noviyanti^a, Yeni Wahyuni Hartati^a, Guoqing Guan^f

^a Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas
Padjadjaran, Jl. Raya Bandung – Sumedang KM. 21 Jatinangor, Sumedang 45363, Indonesia
^b Study Center of Natural Resources, Energy and Environmental Engineering, Universitas
Padjadjaran, Jl. Raya Bandung – Sumedang KM. 21 Jatinangor, Sumedang 45363, Indonesia
^c Department of Chemistry, Faculty of Science, Rangsit University, Pathumthani 1200, Thailand
^d Department of Bioenergy Engineering and Chemurgy, Institut Teknologi Bandung, Jl. Let. Jen.
Purn. Dr. (HC). Mashudi No. 1, Sumedang 45363, Indonesia

^e Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia

^fInstitute of Regional Innovation, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan

*Corresponding author.

E-mail address: irwan.kurnia@unpad.ac.id (I. Kurnia)

No	Model	Non-linear equation	Linear equation
	<u>Kinetic</u>		
S1	PFO	$q_t = q_e(1 - exp^{-k_1 t})$	$\log (q_e - q_t) = \log q_e - \frac{k_1}{2.303}t$
S2	PSO	$q_t = \frac{k_2 q_e^2 t}{1 + k_2 q_e t}$	$\frac{t}{q_t} = \frac{1}{k_2 {q_e}^2} + \frac{1}{q_e} t$
S3	ID-WM	$q_t = q_e (1 - exp^{-k_{ip}t})$	
	Isotherm		
S4	Langmuir	$q_e = \frac{q_e K_L C_e}{1 + K_L C_e}$	$\frac{C_e}{q_e} = \frac{1}{q_{max}K_L} + \frac{1}{q_{max}}C_e$
S5	Freundlich	$q_e = K_F C_e^{1/n}$	$\log q_e = \log K_F + \frac{1}{n} \log C_e$
S6	Redlich-Peterson	$q_e = \frac{K_{RP}C_e}{1 + \alpha_{RP}C_e^{\ \beta}}$	$\ln\left(\frac{K_{RP}}{q_e} - 1\right) = \ln \alpha_{RP} + \beta \ln C_e$
S7	Temkin	$q_e = \frac{RT}{H_{ads}} \ln \left(K_T C_e \right)$	$q_e = \frac{RT}{H_{ads}} \ln (K_T) + \frac{RT}{H_{ads}} \ln (C_e)$

Table S1. Linear and non-linear equations of kinetics and isotherm models

 q_e and q_t (mg g⁻¹) are the amounts of adsorbate at equilibrium and at time *t*, respectively; k_1 (min⁻¹) is are the pseudo-first-order rate constants and k_2 (mg g⁻¹ min⁻¹) are the pseudo-first-order and the pseudo-second-order rate constants; k_{ip} (mg g⁻¹ min^{1/2}) is the interparticle diffusion Weber-Morris rate constant; C_e (mg L⁻¹) is the equilibrium concentration of the adsorbate; q_{max} (mg g⁻¹) is the Langmuir maximum adsorption capacity of adsorbate per unit mass of adsorbent; K_L (L mg⁻¹) is the Langmuir constant related to the adsorption equilibrium; K_F (mg g⁻¹ (L mg⁻¹)^{1/n}) is the Freundlich constant related to the adsorption capacity; *n* (dimensionless) is the intensity of adsorption and constants incorporating the factors affecting the adsorption capacity; K_{RP} (L g⁻¹) and α_{RP} (L mg⁻¹) are Redlich-Peterson model constants; β is the exponent in between of 0 and 1; K_T (L/g) is Temkin constants; H_{ads} (J/mol) is enthalpy of adsorption.

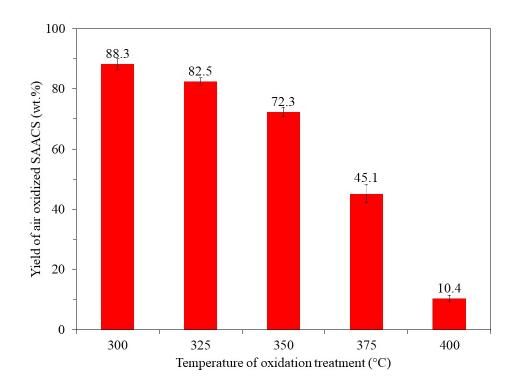


Fig. S1. The yield of air oxidized SACCS (SACCS-X) at different final temperatures.

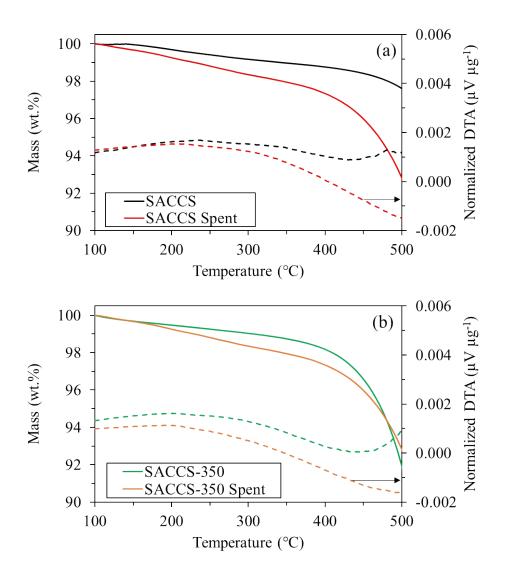


Fig. S2. TGA-DTA profiles of adsorbents. (a) SACCS and SACCS Spent; (b) SACCS-350 and SACCS-350 Spent.

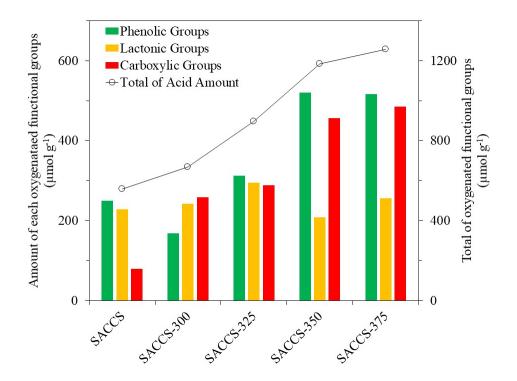


Fig. S3. The amounts of each oxygenated functional groups on SACCS and air oxidized SACCS-X.

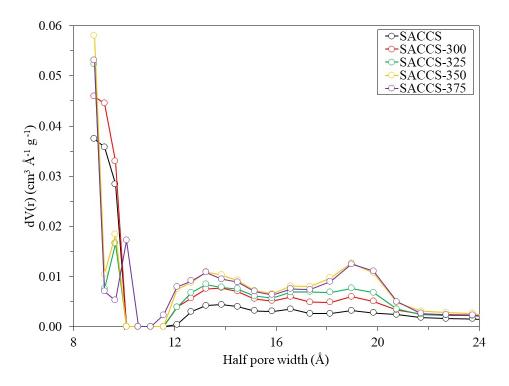


Fig. S4. Pore size distributions of the SACCS and air oxidized SACCS-X.

Pore size distribution was determined by NLDFT with slit pore model for carbon materials. The determination models of N₂ adsorption isotherms were measured at 77 K in the range of relative pressure of $P/P_0 = 0.01-1.00$.

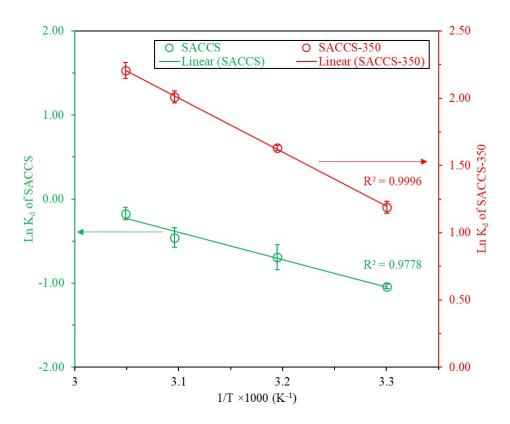


Fig. S5. Ln K_d vs 1000 T⁻¹ plot for thermodynamic parameter determinations of SACCS and SACCS-350. Adsorbent = 15 mg, MB = 100 mg L⁻¹, 500 rpm, 180 min.

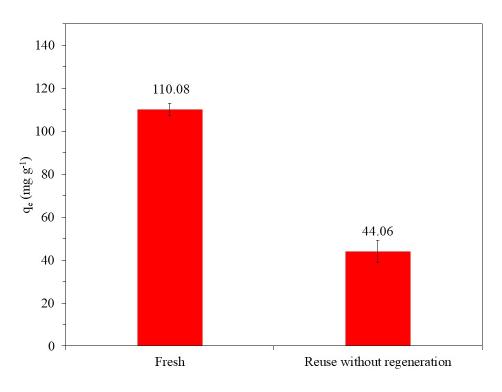


Fig. S6. Reusability of SACCS-350 without a regeneration process. Adsorbent = 15 mg, MB = $100 \text{ mg } \text{L}^{-1}$, 500 rpm, 30°C, 180 min.