Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

## Transparent TiO<sub>2</sub> thin films with high photocatalytic activity for indoor air purification

### Jekaterina Sydorenko a\*, Arvo Mere a, Malle Krunks a, Marina Krichevskaya b and Ilona Oja Acik a

- <sup>a</sup> Laboratory of Thin Films Chemical Technologies, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia.
- <sup>b</sup> Laboratory of Environmental Technology, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
- \* Corresponding authors: Jekaterina Sydorenko email: jekaterina.spiridono@taltech.ee, Marina Krichevskaya email: marina.kritsevskaja@taltech.ee, Ilona Oja Acik email: ilona.oja@taltech.ee.

## **Supplementary Information Section**

#### Content

| 1. Spray pyrolysis setup                                                                          | S2  |
|---------------------------------------------------------------------------------------------------|-----|
| 2. Setup used for gas-phase photocatalytic experiments                                            | S2  |
| 3. Surface morphology                                                                             | S3  |
| 4. Quantum efficiency calculations                                                                | S3  |
| 5. Langmuir-Hinshelwood reaction kinetics                                                         | S4  |
| 6. Reynolds number calculations                                                                   | S4  |
| 7. The comparative table of photocatalytic oxidation of heptane and toluene on $TiO_2$ thin films | S6  |
| 8. Conversion of compounds in 9 ppm of mixture under different operating parameters               | S9  |
| References                                                                                        | S10 |

# 1. Spray pyrolysis setup



Fig. SI-1 The sheme of the ultrasonic spray pyrolysis setup.



# 2. Setup used for gas-phase photocatalytic experiments.

Fig. SI-2 The sheme of setup used for gas-phase photocatalytic experiments.

## 3. Surface morphology



**Fig. SI-3** Scanning electron microscopy (SEM) (a), cross-sectional SEM (b) and atomic force microscopy (AFM) (c) images of TiO<sub>2</sub> film.

#### 4. Quantum efficiency calculations

 $QE = \frac{Number of degraded molecules}{Number of incident photons}$ 

Number of degraded molecules per second =  $\frac{G * A * r_o}{V_M}$ 

Where G – Gas flow rate: G=0.5 L/min=0.0083 L/s

A – Avogadro number: A=  $6.02 \cdot 10^{23}$ 

 $r_{o-}$  Initial reaction rate:  $r_{o} = -\frac{dC}{dt}$  For example, at heptane initial concentration 5 ppm  $r_{o} = 0.34$  ppm per 1 s = 0.34 · 10<sup>-6</sup> mol / mol air

 $V_M$  – Molar volume of ideal gas:  $V_M$ = 22.4 L/mol air

Number of degraded molecules per second =  $\frac{0.0083 \cdot 6.02 \cdot 10^{23} \cdot 0.34 \cdot 10^{-6}}{22.4} = 7.58 \cdot 10^{13}$  1/s

Number of incident photons per second:

Number of incident photons =  $\frac{Energy \ of \ the \ lamp}{Energy \ of \ photons} = \frac{0.42}{5.442 \cdot 10^{-19}} = 7.72 \cdot 10^{17} \ 1/s$ 

Energy of the lamp = Irradiated surface area  $\cdot$  Irradiance  $\cdot$  Time =  $120 \cdot 3.5 \cdot 10^{-3} \cdot 1 = 0.42$  J/s

Where irradiated surface area for one section of the reactor is 120 cm<sup>2</sup>

Irradiance of the UV-A lamp is  $3.5 \text{ mW/cm}^2 = \cdot 3.5 \cdot 10^{-3} \text{ W/cm}^2$ 

Photon energy: 
$$E = \frac{hc}{\lambda} = \frac{6.626 \cdot 10^{-34} J \cdot s \cdot 299792458 m/s}{3.65 \cdot 10^{-7} m} = 5.442 \cdot 10^{-19} J,$$

Where h - is the Planck constant:  $h=6.626 \cdot 10^{-34} \text{ J} \cdot \text{s}$ 

c - is the speed of the light in vacuum: c=299792458 m/s

## $\lambda$ – is the photon's wavelength for UV-A lamps: $\lambda$ =3.65 $\cdot$ 10<sup>-7</sup> m

Quantum efficiency for 5 ppm heptane degradation at air flow rate 0.5 L/min and RH 6%

$$QE = \frac{7.58 \cdot 10^{13}}{7.72 \cdot 10^{17}} = 9.82 \cdot 10^{-5} \text{ molecules / photons}$$

### 5. Langmuir-Hinshelwood reaction kinetics



**Fig. SI-4** Langmuir-Hinshelwood kinetic plot for the determination of heptane degradation reaction rate and adsorption constants.

#### 6. Reynolds number calculations

To determine the flow pattern Reynolds number calculations were performed.

When Re < 2300 flow is laminar.

When 2300 < Re < 4000 transient.

When Re > 4000 turbulent.

Reynolds number was found:

Where  $\rho$  – density of air, kg/m<sup>3</sup>

for air at T = 40°C  $\rho$  = 1.127 kg/m<sup>3</sup>

- v flow speed of air, m/s
- L characteristic linear dimension of the reactor, m
- $\mu$  dynamic viscosity of air, Pa·s for air at T =4 0°C  $\mu$  = 19.07  $\cdot$  10<sup>-6</sup> Pa·s

$$L = \frac{4 A_{cross}}{P}$$

Where  $A_{cross}$  - cross-section area

P-wetting perimeter

For used in the study reactor  $A_{cross} = 4.32 \text{ cm}^2$  and P = 10.16 cm

$$L = \frac{4 \cdot 4.32}{10.16} = 1.7 \ cm = 0.017 \ m$$

At air flow rate 0.5 L/min:

 $v = \frac{air flow rate}{Across} = \frac{500 \frac{cm^3}{min}}{4.32 cm} = 115.74 \frac{cm}{min} = 0.0193 \frac{m}{s}$  $Re = \frac{1.127 \cdot 0.0193 \cdot 0.017}{19.07 \cdot 10^{-6}} = 19.39$ 

At air flow rate 1 L/min:

$$v = 0.0386 \frac{m}{s}$$

$$Re = \frac{1.127 \cdot 0.0386 \cdot 0.017}{19.07 \cdot 10^{-6}} = 38.78$$

At air flow rate 1.5 L/min:  

$$v = 0.0578 \frac{m}{s}$$
  
 $Re = \frac{1.127 \cdot 0.0578 \cdot 0.017}{19.07 \cdot 10^{-6}} = 58.14$ 

At air flow rate 2 L/min:  

$$v = 0.0772 \frac{m}{s}$$
  
 $Re = \frac{1.127 \cdot 0.0772 \cdot 0.017}{19.07 \cdot 10^{-6}} = 77.52$   
At air flow rate 2.5 L/min:  
 $v = 0.0965 \frac{m}{s}$   
 $Re = \frac{1.127 \cdot 0.0965 \cdot 0.017}{19.07 \cdot 10^{-6}} = 96.90$ 

# 7. The comparative table of photocatalytic oxidation of heptane and toluene on TiO<sub>2</sub> thin films

**Table SI-1.** The comparative table of photocatalytic oxidation of heptane and toluene on  $TiO_2$  thin films prepared in current study and on other thin films available from the scientific literature.

| Photocatalyst                                                 | Thickness | Pollutant | Initial<br>Concentr<br>ation | Reactor                    | Catalyst<br>surface<br>area | Light<br>source                 | Oxidation<br>conditions               | Conversion/<br>degradation<br>rate | Reac<br>tion<br>time | Ref           |
|---------------------------------------------------------------|-----------|-----------|------------------------------|----------------------------|-----------------------------|---------------------------------|---------------------------------------|------------------------------------|----------------------|---------------|
| Spray pyrolysis-<br>synthesized TiO <sub>2</sub><br>thin film | 370 nm    | Heptane   | 10 ppm                       | Continuous flow reactor    | 360 cm <sup>2</sup>         | UV-A, 3.5<br>mW/cm <sup>2</sup> | Air flow rate<br>0.5 L/min, RH<br>6%  | 100%                               | 46.8<br>s            | This<br>study |
| Spray pyrolysis-<br>synthesized TiO <sub>2</sub><br>thin film | 370 nm    | Heptane   | 10 ppm                       | Continuous flow reactor    | 600 cm <sup>2</sup>         | UV-A, 3.5<br>mW/cm <sup>2</sup> | Air flow rate<br>0.5 L/min, RH<br>40% | 91%                                | 78 s                 | This<br>study |
| Spray pyrolysis-<br>synthesized TiO <sub>2</sub><br>thin film | 370 nm    | Heptane   | 10 ppm                       | Continuous<br>flow reactor | 600 cm <sup>2</sup>         | VIS, 3.3<br>mW/cm <sup>2</sup>  | Air flow rate<br>0.5 L/min, RH<br>6%  | 44%                                | 78 s                 | This<br>study |
| Spray pyrolysis-<br>synthesized TiO <sub>2</sub><br>thin film | 200 nm    | Heptane   | 10 ppm                       | Continuous<br>flow reactor | 600 cm <sup>2</sup>         | UV-A, 3.5<br>mW/cm <sup>2</sup> | Air flow rate<br>0.5 L/min, RH<br>6%  | 48%                                | 78 s                 | S2            |
| Spray pyrolysis-<br>synthesized TiO <sub>2</sub><br>thin film | 200 nm    | Heptane   | 10 ppm                       | Continuous flow reactor    | 600 cm <sup>2</sup>         | UV-A, 3.5<br>mW/cm <sup>2</sup> | Air flow rate<br>0.5 L/min, RH<br>40% | 20%                                | 78 s                 | S2            |
| Spray pyrolysis-                                              | 370 nm    | Toluene   | 10 ppm                       | Continuous                 | 600 cm <sup>2</sup>         | UV-A, 3.5                       | Air flow rate                         | 55%                                | 78 s                 | This          |

| synthesized TiO <sub>2</sub>                                                            |                 |         |               | flow reactor                             |                     | mW/cm <sup>2</sup>               | 0.5 L/min, RH                                      |                                                                  |       | study         |
|-----------------------------------------------------------------------------------------|-----------------|---------|---------------|------------------------------------------|---------------------|----------------------------------|----------------------------------------------------|------------------------------------------------------------------|-------|---------------|
| thin film                                                                               |                 |         |               |                                          |                     |                                  | 6%                                                 |                                                                  |       |               |
| Spray pyrolysis-<br>synthesized TiO <sub>2</sub><br>thin film                           | 370 nm          | Toluene | 10 ppm        | Continuous flow reactor                  | 600 cm <sup>2</sup> | UV-A, 3.5<br>mW/cm <sup>2</sup>  | Air flow rate<br>0.5 L/min, RH<br>40%              | 51%                                                              | 78 s  | This<br>study |
| Spray pyrolysis-<br>synthesized TiO <sub>2</sub><br>thin film                           | 370 nm          | Toluene | 10 ppm        | Continuous flow reactor                  | 600 cm <sup>2</sup> | VIS, 3.3<br>mW/cm <sup>2</sup>   | Air flow rate<br>0.5 L/min, RH<br>6%               | 6%                                                               | 78 s  | This<br>study |
| Sol-gel dip-coated $TiO_2$ thin film                                                    | 470 nm          | Toluene | 192 ppm       | Batch 0.55 L<br>recirculating<br>reactor | 20 cm <sup>2</sup>  | UV-A, 4W                         | Recirculation<br>flow rate 0.075<br>L/min, Dry air | 60%                                                              | 2 h   | S3            |
| Sol-gel dip-coated<br>Ti <sub>0.90</sub> Zr <sub>0.10</sub> O <sub>2</sub> thin<br>film | 540 nm          | Toluene | 192 ppm       | Batch 0.55 L<br>recirculating<br>reactor | 20 cm <sup>2</sup>  | UV-A, 4W                         | Recirculation<br>flow rate 0.075<br>L/min, Dry air | 70%                                                              | 2 h   | S3            |
| Sol-gel dip-coated<br>10% ZrO <sub>2</sub> /TiO <sub>2</sub> thin<br>film               | 410 nm          | Toluene | 192 ppm       | Batch 0.55 L<br>recirculating<br>reactor | 20 cm <sup>2</sup>  | UV-A, 4W                         | Recirculation<br>flow rate 0.075<br>L/min, Dry air | 50%                                                              | 2 h   | S3            |
| Sol-gel dip-coated $TiO_2$ thin film                                                    | Not<br>reported | Toluene | 50-180<br>ppm | Batch 1.1 L<br>reactor                   | 68 cm <sup>2</sup>  | UV-LED,<br>10 mW/cm <sup>2</sup> | Dry air                                            | 1.83 x 10 <sup>-4</sup><br>mol m <sup>-3</sup> min <sup>-1</sup> | 1 h   | S4            |
| Sol-gel dip-coated<br>0.7% Fe-TiO <sub>2</sub> thin<br>film                             | Not<br>measured | Toluene | 50-180<br>ppm | Batch 1.1 L<br>reactor                   | 68 cm <sup>2</sup>  | UV-LED,<br>10 mW/cm <sup>2</sup> | Dry air                                            | 2.57 x 10 <sup>-4</sup><br>mol m <sup>-3</sup> min <sup>-1</sup> | 1 h   | S4            |
| Sol-gel dip-coated                                                                      | 0.9 µm          | Toluene | 1 ppm         | Continuous                               | 50 cm <sup>2</sup>  | UV-A, 1                          | Air flow rate                                      | 46%                                                              | 0.2 s | 85            |

| TiO <sub>2</sub> thin film                                                    |        |         |         | flow reactor                                          |                       | mW/cm <sup>2</sup>                  | 0.5 L/min, RH                                 |     |           |    |
|-------------------------------------------------------------------------------|--------|---------|---------|-------------------------------------------------------|-----------------------|-------------------------------------|-----------------------------------------------|-----|-----------|----|
| Sol-gel dip coated $TiO_2$ thin film                                          | 350 nm | Toluene | 155 ppb | Benchtop<br>continuous                                | 1.2 cm <sup>2</sup>   | UV-C, 3.0<br>mW/cm <sup>2</sup>     | Air flow rate<br>0.5 L/min, dry               | 78% | 1 s       | S6 |
| Sol-gel dip coated<br>TiO <sub>2</sub>                                        | 1.3 µm | Toluene | 0.5 ppm | flow reactor<br>Continuous<br>flow tubular<br>reactor | 184 cm <sup>2</sup>   | UV-A,<br>10W                        | air<br>Air flow rate<br>0.2 L/min, dry<br>air | 95% | 25 s      | S7 |
| Sol-gel dip coated<br>porphyrin-<br>sensitized TiO <sub>2</sub> thin<br>films | 1.3 μm | Toluene | 0.5 ppm | Continuous<br>flow tubular<br>reactor                 | 184 cm <sup>2</sup>   | VIS, 10W                            | Air flow rate<br>0.2 L/min, dry<br>air        | 15% | 25 s      | S7 |
| E-beam evaporated $TiO_2$ thin films                                          | 20 nm  | Toluene | 5 ppm   | Batch 0.314 L<br>reactor                              | 18.75 cm <sup>2</sup> | UV-A,<br>0.304<br>W/cm <sup>2</sup> | Water vapour<br>atmosphere                    | 40% | 30<br>min | S8 |

## 8. Conversion of compounds in 9 ppm of mixture under different operating parameters

**Table SI-2.** Conversion of compounds in 9 ppm of mixture heptane, acetone and acetaldehyde (3 ppm each compound) under different operating parametersat different photocatalytic surface areas. AD – acetaldehyde, AC – acetone and HEP - heptane

| Оре              | Conversion (%)                                 |      |                                            |    |     |                                            |    |     |                                            |     |     |       |                                  |        |                                            |     |     |
|------------------|------------------------------------------------|------|--------------------------------------------|----|-----|--------------------------------------------|----|-----|--------------------------------------------|-----|-----|-------|----------------------------------|--------|--------------------------------------------|-----|-----|
| Air flow<br>rate | Air flow Relative<br>rate humidity Irradiation |      | Surface of catalyst<br>120 cm <sup>2</sup> |    |     | Surface of catalyst<br>240 cm <sup>2</sup> |    |     | Surface of catalyst<br>360 cm <sup>2</sup> |     |     | Surfa | ice of ca<br>480 cm <sup>2</sup> | talyst | Surface of catalyst<br>600 cm <sup>2</sup> |     |     |
| (L/min)          | (%)                                            |      | AD                                         | AC | HEP | AD                                         | AC | HEP | AD                                         | AC  | HEP | AD    | AC                               | HEP    | AD                                         | AC  | HEP |
| 0.5              | 6                                              | UV-A | 100                                        | 93 | 77  | 100                                        | 99 | 92  | 100                                        | 100 | 100 | 100   | 100                              | 100    | 100                                        | 100 | 100 |
| 1                | 6                                              | UV-A | 63                                         | 63 | 56  | 86                                         | 84 | 81  | 92                                         | 91  | 90  | 100   | 100                              | 100    | 100                                        | 100 | 100 |
| 0.5              | 40                                             | UV-A | 46                                         | 31 | 30  | 65                                         | 55 | 48  | 83                                         | 76  | 67  | 100   | 87                               | 77     | 100                                        | 100 | 82  |
| 0.5              | 6                                              | VIS  | 39                                         | 33 | 15  | 51                                         | 53 | 26  | 71                                         | 71  | 40  | 87    | 85                               | 59     | 100                                        | 100 | 78  |

**Table SI-3.** Conversion of compounds in 9 ppm of mixture toluene, acetone and acetaldehyde (3 ppm each compound) under different operating parameters atdifferent photocatalytic surface areas. AD – acetaldehyde, AC – acetone and TOL – toluene

| Оре              | Conversion (%)       |             |                                            |    |                                            |     |     |                                            |     |     |       |                      |        |                                            |     |     |     |
|------------------|----------------------|-------------|--------------------------------------------|----|--------------------------------------------|-----|-----|--------------------------------------------|-----|-----|-------|----------------------|--------|--------------------------------------------|-----|-----|-----|
| Air flow<br>rate | Relative<br>humidity | Irradiation | Surface of catalyst<br>120 cm <sup>2</sup> |    | Surface of catalyst<br>240 cm <sup>2</sup> |     |     | Surface of catalyst<br>360 cm <sup>2</sup> |     |     | Surfa | ice of ca<br>480 cm² | talyst | Surface of catalyst<br>600 cm <sup>2</sup> |     |     |     |
| (L/min)          | (%)                  |             | AD                                         | AC | TOL                                        | AD  | AC  | TOL                                        | AD  | AC  | TOL   | AD                   | AC     | TOL                                        | AD  | AC  | TOL |
| 0.5              | 6                    | UV-A        | 78                                         | 70 | 71                                         | 100 | 100 | 97                                         | 100 | 100 | 100   | 100                  | 100    | 100                                        | 100 | 100 | 100 |
| 1                | 6                    | UV-A        | 40                                         | 40 | 48                                         | 61  | 60  | 67                                         | 82  | 81  | 85    | 91                   | 86     | 100                                        | 100 | 93  | 100 |
| 0.5              | 40                   | UV-A        | 40                                         | 32 | 37                                         | 65  | 51  | 65                                         | 78  | 68  | 70    | 88                   | 81     | 78                                         | 100 | 100 | 90  |
| 0.5              | 6                    | VIS         | 20                                         | 24 | 16                                         | 21  | 25  | 28                                         | 33  | 34  | 28    | 36                   | 38     | 29                                         | 52  | 53  | 31  |

### References

- S1 C. Geankoplis, *Transport processes and unit operations*, 3rd edn., 1993, 921.
- S2 I. Dundar, M. Krichevskaya, A. Katerski, M. Krunks and I. O. Acik, *Catalysts*, 2019, **9**, 915, DOI:10.3390/catal9110915.
- S3 M. D. Hernández-Alonso, I. Tejedor-Tejedor, J. M. Coronado and M. A. Anderson, *Appl. Catal. B Environ.*, 2011, **101**, 283-293, DOI:10.1016/j.apcatb.2010.09.029.
- S4 T. Rojviroon, A. Laobuthee and S. Sirivithayapakorn, *Int. J. Photoenergy*, 2012, 8, DOI:10.1155/2012/898464.
- S5 N. Negishi, S. Matsuzawa, K. Takeuchi and P. Pichat, *Chem. Mater.*, 2007, **19**, 3808-3814, DOI:10.1021/cm070320i.
- S6 N. Quici, M. L. Vera, H. Choi, G. L. Puma, D. D. Dionysiou, M. I. Litter and H. Destaillats, *Appl. Catal. B Environ.*, 2010, **95**, 312-319, DOI:10.1016/j.apcatb.2010.01.009.
- S7 P. C. Yao, S. T. Hang, C. W. Lin and D. H. Hai, *J. Taiwan Inst. Chem. Eng.*, 2011, **42**, 470-479, DOI:10.1016/j.jtice.2010.08.013.
- S8 C. Garlisi and G. Palmisano, *Appl. Surf. Sci.*, 2017, **420**, 89-93,
   DOI:10.1016/j.apsusc.2017.05.077.