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Abstract

The radioactive 129I is a top-priority radionuclide due to its the long half-life (1.57 × 107 y) and high mobility. 

Because of the planned and accidental releases to the environment, specific separation technologies are 

required to limit the potential radiation dose to human beings. Zirconium oxides are known for their 

adsorption capability and selectivity to oxyanions and here the applicability to selective IO3
- removal has 

been investigated regarding the uptake mechanism, regeneration and competition caused by other anions, 

like environmentally relevant SO4
2-. Granular aggregates of hydrous zirconium oxides with and without Sb 

doping showed high potential for the selective IO3
- removal in the presence of competing anions, like the 

fore mentioned SO4
2- (apparent capacity between 0.1 – 0.4 meq/g depending on SO4

2- concentration). The 

main uptake mechanism was found to be outer-sphere complexation (ion-exchange) to the protonated 

hydroxyl groups of hydrous zirconium oxides but also minor mechanisms were identified including inner-

sphere complexation and reduction to I-. The materials were observed to be easily and successively 
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regenerated using dilute acid. Hydrous zirconium oxides showed high potential for IO3
- removal from waste 

solutions regarding technical (high selectivity and apparent capacity) and ecological/economic (feasible 

regeneration) aspects.

1. Equations for the capacity calculatios

The apparent capacity q of analyte by ion exchanger for a single sample is calculated by Equation (SI1):

(Equation SI1)
𝑞 =

(𝑐𝑖 ‒ 𝑐𝑓) × 𝑉

𝑚
 

where 

 = initial concentration of analyte in the solution.ci

 = final concentration of analyte in the solution.cf

 = volume of the solutionV

m = mass of the dry ion exchanger

The corresponding uncertainty of uptake is calculated by Equation (SI2): 

(Equation SI2)
∆𝑞 = (𝑉

𝑚
× ∆ 𝑐𝑖)2 + (𝑉

𝑚
× ∆ 𝑐𝑓)2 + ((𝑐𝑖 ‒ 𝑐𝑓)

𝑚
× ∆𝑉)2

Equation (SI2) does not take the errors of mass (0.05 %) into account as it is insignificant compared to errors 

concentration measurements (relative errors (1 σ) 0.5 – 50 % depending on the count rate for γ-detector or 

0.1 unit for pH detector).

The total qtotal is the sum of qi of the individual fractions described by Equation (SI3):

(Equation SI3)
𝑞𝑡𝑜𝑡𝑎𝑙 =  

𝑛

∑
𝑖 = 1

𝑞𝑖

The corresponding uncertainty of uptake is calculated by Equation (SI4):



(Equation SI4)
∆𝑞𝑡𝑜𝑡𝑎𝑙 =

𝑛

∑
𝑖 = 1

∆𝑞𝑖
2

2. B: Application on selective IO3
- removal from waste solutions

Table 1 Comparison of 127IO3
- and 125IO3

- apparent capacities determined in two parallel column experiments (total iodate 
concentration: 1 mM).

Iodine isotope Analysis method Apparent capacity

[mmol/g]

Feed pH

125IO3
- γ-detector 0.42 ± 0.02 5.6

127IO3
- HPLC-ICP-MS 0.44 ± 0.02 5.7

Figure 1 IO3
- (c = 1 mM) breakthrough and pH curves for ZrO2 columns in different SO4

2- concentrations. The equilibrium uptake is 
represented in parentheses of each legend. The uncertainties are not shown in the graph due to the clarity but were below 4.0 % for 
the determined apparent capacities.
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Figure 3 IO3
- breakthrough and pH curves of two repetions of ZrO2 columns in 0.25 mM SO4

2- and 1 mM IO3
-.

Figure 2 IO3
- breakthrough and pH curves of two repetions of ZrSbO2 columns in 0.25 mM SO4

2- and 1 mM IO3
-.
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Figure 4 Column elution curves for different eluents for Zr(Sb)O2 (left) and ZrO2 (right) for the column elution experiment with NaNO3, 
Na2SO4 and NaOH as eluents.

Figure 5 Column elution curves for different eluents for Zr(Sb)O2 (left) and ZrO2 (right) for the column elution experiment with 
Na2SO4 and NaOH as eluents.
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Figure 6 The gamma spectra of 125I of the measured used column beds after the column elution experiments.

Figure 7 125IO3
- breakthrough and corresponding pH curves as function of bed volumes for each load cycle in regeneration 

experiment with loading solution containing 10 mM SO4
2- and 1 mM IO3

-.
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3. Solid sample characterization

3.1. XRD
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Figure 8 Powder XRD diffractograms of ZrO2 and Zr(Sb)O2.

3.2. FE-SEM

Figure 9 SEM images of ZrO2 (left) and Zr(Sb)O2 (right).





3.3. EXAFS fittings

Iodine

Figure 10 I K-edge EXAFS fits in k- and R-space for ZrO2 samples.

Figure 11 I EXAFSf its of Zr(Sb)O2



Table 2 Fitting parameters for I K-edge EXAFS spectra measured for ZrO2 and Zr(Sb)O2 loaded with IO3
- in 

different conditions. S0
2 (0.98 ± 0.02) and ΔE0 were extracted from the fit of Zr(IO3)4 reference sample and set 

as global parameters. The combined R-factor for the fit was 0.0097.

Sample ΔE

eV

R

Å

N σ²

ZrO2

DI water 15.2(1) 1.81(1) 3.0(2) 0.003(1)

1 mM SO4
2- 15.2(1) 1.82(1) 3.3(1) 0.002(1)

10 mM SO4
2- 15.2(1) 1.81(1) 3.3(2) 0.002(1)

Zr(Sb)O2

DI water 15.2(1) 1.81(1) 2.9(1) 0.002(1)

1 mM SO4
2- 15.2(1) 1.82(1) 3.1(3) 0.003(2)

10 mM SO4
2- 15.2(1) 1.83(2) 1.7(3) 0.014(3)



Zirconium

Figure 12 Zr K-edge EXAFS and Fourier transformed spectra of ZrO2 (left graph) and Zr(Sb)O2 (right graph) before and after IO3
- 

adsorption. FT window of 3 to 12 Å-1 was used.
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Figure 13 Zr K-edge EXAFS fits in R- and k-space for pure and loaded Zr(Sb)O2.

Figure 14 Zr K-edge EXAFS fits in R- and k-space for pure and loaded ZrO2.



Table 3 Fitting parameters for Zr K-edge EXAFS spectra measured for pure and IO3
- loaded ZrO2 and 

Zr(Sb)O2. S0
2 (0.69 ± 0.03) and ΔE0 were extracted from the fit of ZrO2 sample and set as global parameters. 

The combined R-factor for the fit was 0.0163.

Sample ΔE0

eV

R

Å

N σ²

ZrO2

Pure -3.9(5) 2.15(1) 6 (fixed) 0.007(2)

IO3
- loaded -3.9(5) 2.15(1) 6.2(8) 0.008(1)

Zr(Sb)O2

Pure -3.9(5) 2.15(1) 6.5(9) 0.007(1)

IO3
- loaded -3.9(5) 2.15(1) 6.2(8) 0.007(1)



Antimony

Table 4 Fitting parameters for Sb K-edge EXAFS spectra measured for pure and IO3
- loaded ZrO2 and 

Zr(Sb)O2. S0
2 (0.74 ± 0.04) and ΔE0 were extracted from the fit of Sb2O3 sample and set as global parameters. 

The combined R-factor for the fit was 0.012. R-space 1.1 – 2.0 Å based on k-space 2.7 – 8 Å-1 (pure) or 2.7 – 
10 Å-1 (loaded).

Sample ΔE

eV

R

Å

N σ²

Zr(Sb)O2

Pure 8.1(6) 1.99(3) 6(2) 0.012(5)

IO3
- loaded 8.1(6) 1.97(2) 6(1) 0.002(3)

Figure 15 Sb K-edge EXAFS fits in R- and k-space for pure and loaded Zr(Sb)O2.



3.4. GC-MS chromatograms
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Figure 16 GC-MS chromatogram for m/z 18 (H2O) and m/z 44 (CO2) for HCl and NaOH treated ZrSbO2.
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Figure 17 GC-MS chromatogram for m/z 36 (H35Cl) and m/z 38 (H37Cl) for HCl and NaOH treated ZrSbO2.
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Figure 18 GC-MS chromatogram for m/z 36 (HCl) and m/z 193 (SbCl5) for HCl and NaOH treated ZrSbO2.
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