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S1 - Materials and Instruments

All chemicals were commercially available and used without further purification. IR spectra were
recorded on a Nicolet-iS50 FT-IR spectrophotometer with KBr pellets in the region of 4000-400
cm!. The powder X-ray diffraction (PXRD) data were collected on a Rigaku SmartLab 9 kW
Advance diffractionmeter with Cu-Ka radiation (A = 1.5418 A) at 298 K. Thermogravimetric
analysis (TGA) was performed under nitrogen atmosphere on a TG/DSC-QMS analyzer with a
heating rate of 20 °C/min. Argon and CO, adsorption isotherms were measured on a Micromeritics
ASAP 2460 system. The samples were degassed at 200 °C for 12 h prior to the measurements. 'H
NMR spectra were measured on Bruker 500 MHz spectrometer by using tetramethylsilane (TMS)
as the internal standard.

S2- Single-crystal X-ray diffraction analysis of MOF 1-Yb

Fig. S1 The asymmetric units in the 1-Yb



Table S1 Crystal data and structure refinements for MOFs 1-Tb and 1-Yb

1-Tb

1-Yb

Empirical formula

C31H3oN305Tb

C31H30N305YDb

Formula weight 731.50 745.62
Crystal system triclinic triclinic
Space group P-1 P-1
a/A 8.8772(3) 8.8416(3)
b/A 12.9580(3) 12.9176(5)
c/A 14.1742(3) 14.0990(6)
a/® 13.0372) 112.907(4)
pre 93.343(2) 93.312(3)
¥/° 106.968(2) 107.248(3)
Volume/A3 1407.25(7) 1388.86(10)
4 2 2
Pealcg/cm’ 1.726 1.7883
wmm-! 2.571 3.426
F(000) 732.0 742.0

260 range for data collection/®

4.892 to0 61.284

4.92 to 61.508

-12<h <11 -12<h<12

Index ranges -16<k<17 -18<k<18

-220<1<19 -19<1<20

GoF on F? 1.040 1.020
. . R; =0.0294 R1=0.0400
Final R indexes [[>=2c (I)]

wR; = 0.0605 wR2 =0.0974

. ) R; =0.0332 R1=10.0442

Final R indexes [all data]

wR;, =0.0629 wR2 =0.1006




S3- The powder X-ray diffraction data analysis

The powder X-ray diffraction (PXRD) data were collected on a Rigaku SmartLab 9 kW Advance
diffractionmeter with Cu-Ka radiation (A = 1.5418 A) at 298 K. The PXRD patterns of as-
synthesized 1-Ln solids are in well agreement with their simulated ones, confirming the phase purity
of the as-synthesized bulk samples.
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Fig. S2 The PXRD patterns of simulated, as-synthesized, and activated samples after adsorption

experiments for 1-Ln.
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Fig. S3 The FT-IR spectrum of 1-Ln indicating almost identical structures.



S5 - Thermogravimetric analysis

Thermogravimetric analysis (TGA) was performed under nitrogen atmosphere on a Netzsch STA
449F5-QMS403C. TGA plot (black line) shows the sample loses all solvents (water, NMP) with a
weight loss of 23.95%(1-Sm), 22.66%(1-Eu), 21.02%(1-Gd), 26.43%(1-Tb), 21.49%(1-Dy), 22.06%
(1-Ho), 21.10%(1-Er), 21.63%(1-Yb) before 260 °C. Then, without clear plateau, it started to
decompose.
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Fig. S4 TGA plot of as-synthsized MOF 1-Ln.

S6 - The adsorption isotherms
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Fig. S5 (a) the Ar adsorption isotherms of 1-Ln at 87 K. (b) the CO, adsorption isotherms at 273 K.
(c) the CO;, adsorption isotherms at 298 K.



S7 - Isosteric heat of CO, adsorption (Qy)
Isosteric heat of CO, adsorption (Qy) was calculated by using the viral equation based on the
isotherms at 273 K and 298 K.
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Fig. S6 Isosteric heat of adsorption (Qy) calculated by the viral method, (a) 1-Sm, (b) 1-Eu, (¢) 1-
Gd, (d)1-Tb, (e) 1-Dy, (f) 1-Ho, (g) 1-Er, (h) 1-Yb.

S8-Catalytic cycloaddition of CO, and epoxides

Table S2 Cycloaddition of various epoxides with CO, catalyzed by 1-Yb under ambient conditions.

o
o 1-Yb
L+ €Oy s A
TBAB °
R
R
Entry Epoxides Product Yield (%)
0 o]
1 O)ko 99.0

o) (o]

2 C'\/A OJ\O 97.0

3 \_\j O \j }O\fo 37.0

o]
; o8 e




The stability of the catalyst is proved by the cycle experiment of the catalyst, 1-Yb was simply
filtrated after the reaction was completed and then washed with Purified water and methanol. The
recovered 1-Yb could be used for successive five recycling runs. Importantly, the catalytic
performance of 1-Yb remained high even after the five recycle runs, [yields of products: 98% (first
run), 99%(second run), 97%(third run), 99%(fourth run), 98%(fifth run).
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Fig. S7 The reaction results of CO,-epoxide cycloaddition reaction catalyzed by 1-Yb in recycle
experiments. Reaction conditions: 4 mmol of epichlorohydrin, solvent free, CO, (1 atm).
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Fig. S8 The PXRD patterns of 1-Yb (from bottom to up): the simulated, the as-synthesized, after

one recycle run, the one after three recycle runs, the one after five recycle runs.
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Fig. S9 A plausible mechanism for the CO,-epoxide cycloaddition reaction over 1-Yb catalyst.

Table S3 Catalytic cycloaddition of CO, and epoxides

Entry Materials Tem.(°C) Time(h) Yield(%) Ref.
1 NUC-38Yb 60 6 98.0 [1]
2 Compound 1 80 4 >99.0 [2]
3 NUC-51a 55 6 99.0 [3]
4 NUC-29 65 12 98.3 [5]
5 NUC-54 60 8 99.0 [6]
6 NUC-53 80 4 99.0 [8]
7 MOF 1 room temperature 48 85.0 [11]
8 JLU-Liu21 80 48 93.0 [12]
9 compound 1 room temperature 48 95.1 [13]
10 1-Yb room temperature 36 97.0 This work

S9-Catalytic deacetalization-Knoevenagel reactions

Table S4: The deacetalization-Knoevenagel condensation reaction of aldehyde derivatives

containing difffferent groups

Entry Subtrate Product Yield (%)
\O 0O, 0.
SN ~

1 100.0
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The stability of the catalyst is proved by the cycle experiment of the catalyst. 1-Yb was simply
filtrated after the reaction was completed and then washed with purified water and methanol. The
recovered 1-YD could be used for successive five recycling runs. Notably, the catalytic performance
of 1-Yb remained high even after the five recycle runs, [0.5 mol% catalyst: yields of 98% (first run),
97% (second run), 95% (third run), 93% (fourth run), 92% (fifth run); 0.3 mol% catalyst: yields of
86% (first run), 85% (second run), 85% (third run), 83% (fourth run), 82% (fifth run)].
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Fig. S10 The reaction results of deacetalization-Knoevenagel condensation catalyzed by 1-Yb in
recycle experiments. Reaction conditions: BD (1 mmol), MA (2 mmol), H,O (3 mmol),

catalysts (0.5 mol% and 0.2 mol% respectively), 60 °C, 6 h, N, atmosphere.



after five runs

after three runs

Intensity(a.u.)

as-synthesized 1-Yb

I simulated

S 10 15 20 25 30 35 40
20/°

Fig. S11 The PXRD patterns of 1-Yb (from bottom to up): the simulated, the as-synthesized, the

one after three recycle runs, the one after five recycle runs.
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Fig. S12 Ar adsorption of the recovered 1-Yb, showing the microporosity of the framework.
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Fig. S13 Plausible reaction mechanism of deacetalization-Knoevenagel condensation reaction
catalyzed by 1-YD.

Table S5 deacetalization-Knoevenagel condensation reaction

Entry Catalyst Solvent Temperature("C)  Reaction time(h) Yield(%) Ref.
1 NUC-51a (1 mol%) DMSO 70 4 99.3 [3]
2 PCN-222-Co@TpPa-1 DMSO-dg 50 10 99.3 [4]
3 NUC-29 (1 mol%) DMSO 70 5 99.2 [5]
4 NUC-54 DMSO 60 5 99.0 [6]
5 Yb-BDC-NH, DMSO-dg 50 24 97.0 [7]
6 Dy-BDC-NH, DMSO-dg 50 24 82.0 [7]
7 Sm-BDC-NH, DMSO-dg 50 24 76.0 [7]
8 NUC-53 DMSO 70 6 99.0 [8]
9 MIL-101(Al)-NH, 1,4-dioxane 90 3 96.0 [9]
10 Compound 1 DMF 80 3 93.5 [10]

11 1-Yb No solvent 60 6 97.0 This work
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Fig. S14 *H NMR spectrum of the mixture products under CO, atmosphere catalyzed by 1-Yb in

CDCls.
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Fig. S15 *H NMR spectrum of the mixture products under CO, atmosphere catalyzed by 1-Eu in

CDCl;.
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Fig. S16 *H NMR spectrum of the mixture products under CO, atmosphere catalyzed by 1-Yb in

CDCls.
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Fig. S17 'H NMR spectrum of the mixture products under CO, atmosphere catalyzed by 1-Yb in
CDCl;.

B 1
~ <
" I}
= =
T T T T T T T T T T T T
1.5 7.0 6.5 6 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5
f1 (ppm

Fig. S18 'H NMR spectrum of the mixture products under CO, atmosphere catalyzed by 1-Yb in
CDCl;.
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Fig. S19 'H NMR spectrum of the mixture products under N, atmosphere catalyzed by 1-Yb in
CDCl;.
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Fig. S20 *H NMR spectrum of the mixture products under N, atmosphere catalyzed by 1-Yb in

CDCls.
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Fig. S21 *H NMR spectrum of the mixture products under N, atmosphere catalyzed by 1-Yb in

CDCl;.
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Fig. S22 'H NMR spectrum of the mixture products under N, atmosphere catalyzed by 1-Yb in
CDCl;.
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