Electronic Supporting Information

Robust acid-base Ln-MOFs: searching for efficient catalysts in cycloaddition of CO₂ with epoxides and cascade deacetalization-Knoevenagel reactions[†]

Xuezhen Si,^a Xuze Pan,^a Jintang Xue,^a Qingxia Yao,^{*a} Xianqiang Huang,^a Wenzeng Duan,^a Yi Qiu,^{*b} Jie Su,^b Minglei Cao,^c Jun Li^{*a}

a. School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Coll aborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China. E-mail: yaoqxlcu@163.com; junli@lcu.edu.cn b. College of Chemistry and molecular engineering, Peking University, Beijing, 100871,PR China. E-mail: qiuyi@pku.edu.cn c.Shandong Ruijie New Material Co.Ltd, Liaocheng 252000, China

S1 - Materials and Instruments

All chemicals were commercially available and used without further purification. IR spectra were recorded on a Nicolet-iS50 FT-IR spectrophotometer with KBr pellets in the region of 4000-400 cm⁻¹. The powder X-ray diffraction (PXRD) data were collected on a Rigaku SmartLab 9 kW Advance diffractionmeter with Cu-K α radiation ($\lambda = 1.5418$ Å) at 298 K. Thermogravimetric analysis (TGA) was performed under nitrogen atmosphere on a TG/DSC-QMS analyzer with a heating rate of 20 °C/min. Argon and CO₂ adsorption isotherms were measured on a Micromeritics ASAP 2460 system. The samples were degassed at 200 °C for 12 h prior to the measurements. ¹H NMR spectra were measured on Bruker 500 MHz spectrometer by using tetramethylsilane (TMS) as the internal standard.

S2- Single-crystal X-ray diffraction analysis of MOF 1-Yb

Fig. S1 The asymmetric units in the 1-Yb

	1-Tb	1-Yb	
Empirical formula	$C_{31}H_{30}N_3O_8Tb$	$C_{31}H_{30}N_3O_8Yb$	
Formula weight	731.50	745.62	
Crystal system	triclinic	triclinic	
Space group	<i>P</i> -1	<i>P</i> -1	
a/Å	8.8772(3)	8.8416(3)	
b/Å	12.9580(3)	12.9176(5)	
c/Å	14.1742(3)	14.0990(6)	
α/°	113.037(2)	112.907(4)	
β/°	93.343(2)	93.312(3)	
γ/°	106.968(2)	107.248(3)	
Volume/Å ³	1407.29(7)	1388.86(10)	
Z	2	2	
$ ho_{calc}g/cm^3$	1.726	1. 7883	
µ/mm ⁻¹	2.571	3.426	
F(000)	732.0	742.0	
2θ range for data collection/°	4.892 to 61.284	4.92 to 61.508	
Index ranges	$-12 \le h \le 11$ $-16 \le k \le 17$ $-20 \le 1 \le 19$	$-12 \le h \le 12$ $-18 \le k \le 18$ $-19 \le l \le 20$	
GoF on F^2	1.040	1.020	
Final R indexes [I>=2σ (I)]	$R_1 = 0.0294$ $wR_2 = 0.0605$	R1 = 0.0400 wR2 = 0.0974	
Final R indexes [all data]	$R_1 = 0.0332$ wR_2 = 0.0629	R1 = 0.0442 wR2 = 0.1006	

Table S1 Crystal data and structure refinements for MOFs 1-Tb and 1-Yb $\,$

S3- The powder X-ray diffraction data analysis

The powder X-ray diffraction (PXRD) data were collected on a Rigaku SmartLab 9 kW Advance diffractionmeter with Cu-K α radiation ($\lambda = 1.5418$ Å) at 298 K. The PXRD patterns of assynthesized 1-Ln solids are in well agreement with their simulated ones, confirming the phase purity of the as-synthesized bulk samples.

Fig. S2 The PXRD patterns of simulated, as-synthesized, and activated samples after adsorption experiments for 1-Ln.

S4-Fourier-Transform infrared spectrum

Fig. S3 The FT-IR spectrum of 1-Ln indicating almost identical structures.

S5 - Thermogravimetric analysis

Thermogravimetric analysis (TGA) was performed under nitrogen atmosphere on a Netzsch STA 449F5-QMS403C. TGA plot (black line) shows the sample loses all solvents (water, NMP) with a weight loss of 23.95%(1-Sm), 22.66%(1-Eu), 21.02%(1-Gd), 26.43%(1-Tb), 21.49%(1-Dy), 22.06% (1-Ho), 21.10%(1-Er), 21.63%(1-Yb) before 260 °C. Then, without clear plateau, it started to decompose.

Fig. S4 TGA plot of as-synthsized MOF 1-Ln.

S6 - The adsorption isotherms

Fig. S5 (a) the Ar adsorption isotherms of 1-Ln at 87 K. (b) the CO₂ adsorption isotherms at 273 K.(c) the CO₂ adsorption isotherms at 298 K.

S7 - Isosteric heat of CO_2 adsorption (Q_{st})

Isosteric heat of CO_2 adsorption (Q_{st}) was calculated by using the viral equation based on the isotherms at 273 K and 298 K.

Fig. S6 Isosteric heat of adsorption (Q_{st}) calculated by the viral method, (a) 1-Sm, (b) 1-Eu, (c) 1-Gd, (d)1-Tb, (e) 1-Dy, (f) 1-Ho, (g) 1-Er, (h) 1-Yb.

S8-Catalytic cycloaddition of CO2 and epoxides

	^o + CO ₂ -	1-Yb TBAB	
Entry	Epoxides	Product	Yield (%)
1	o	°	99.0
2	CI	CI	97.0
3			37.0
4			10.0

Table S2 Cycloaddition of various epoxides with CO₂ catalyzed by 1-Yb under ambient conditions.

The stability of the catalyst is proved by the cycle experiment of the catalyst, 1-Yb was simply filtrated after the reaction was completed and then washed with Purified water and methanol. The recovered 1-Yb could be used for successive five recycling runs. Importantly, the catalytic performance of 1-Yb remained high even after the five recycle runs, [yields of products: 98% (first run), 99%(second run), 97%(third run), 99%(fourth run), 98%(fifth run).

Fig. S7 The reaction results of CO₂-epoxide cycloaddition reaction catalyzed by 1-Yb in recycle experiments. Reaction conditions: 4 mmol of epichlorohydrin, solvent free, CO₂ (1 atm).

Fig. S8 The PXRD patterns of 1-**Yb** (from bottom to up): the simulated, the as-synthesized, after one recycle run, the one after three recycle runs, the one after five recycle runs.

Fig. S9 A plausible mechanism for the CO₂-epoxide cycloaddition reaction over 1-Yb catalyst.

Entry	Materials	Tem.(°C)	Time(h)	Yield(%)	Ref.
1	NUC-38Yb	60	6	98.0	[1]
2	Compound 1	80	4	>99.0	[2]
3	NUC-51a	55	6	99.0	[3]
4	NUC-29	65	12	98.3	[5]
5	NUC-54	60	8	99.0	[6]
6	NUC-53	80	4	99.0	[8]
7	MOF 1	room temperature	48	85.0	[11]
8	JLU-Liu21	80	48	93.0	[12]
9	compound 1	room temperature	48	95.1	[13]
10	1-Yb	room temperature	36	97.0	This work

Table S3 Catalytic cycloaddition of CO_2 and epoxides

S9-Catalytic deacetalization-Knoevenagel reactions

Table S4: The deacetalization-Knoevenagel condensation reaction of aldehyde derivatives containing difffferent groups

The stability of the catalyst is proved by the cycle experiment of the catalyst. 1-Yb was simply filtrated after the reaction was completed and then washed with purified water and methanol. The recovered 1-Yb could be used for successive five recycling runs. Notably, the catalytic performance of 1-Yb remained high even after the five recycle runs, [0.5 mol% catalyst: yields of 98% (first run), 97% (second run), 95% (third run), 93% (fourth run), 92% (fifth run); 0.3 mol% catalyst: yields of 86% (first run), 85% (second run), 85% (third run), 83% (fourth run), 82% (fifth run)].

Fig. S10 The reaction results of deacetalization-Knoevenagel condensation catalyzed by 1-Yb in recycle experiments. Reaction conditions: BD (1 mmol), MA (2 mmol), H₂O (3 mmol), catalysts (0.5 mol% and 0.2 mol% respectively), 60 °C, 6 h, N₂ atmosphere.

Fig. S11 The PXRD patterns of **1-Yb** (from bottom to up): the simulated, the as-synthesized, the one after three recycle runs, the one after five recycle runs.

Fig. S12 Ar adsorption of the recovered 1-Yb, showing the microporosity of the framework.

Fig. S13 Plausible reaction mechanism of deacetalization-Knoevenagel condensation reaction catalyzed by 1-Yb.

Entry	Catalyst	Solvent	Temperature(°C)	Reaction time(h)	Yield(%)	Ref.
1	NUC-51a (1 mol%)	DMSO	70	4	99.3	[3]
2	PCN-222-Co@TpPa-1	DMSO-d ₆	50	10	99.3	[4]
3	NUC-29 (1 mol%)	DMSO	70	5	99.2	[5]
4	NUC-54	DMSO	60	5	99.0	[6]
5	Yb-BDC-NH ₂	DMSO-d ₆	50	24	97.0	[7]
6	Dy-BDC-NH ₂	DMSO-d ₆	50	24	82.0	[7]
7	Sm-BDC-NH ₂	DMSO-d ₆	50	24	76.0	[7]
8	NUC-53	DMSO	70	6	99.0	[8]
9	MIL-101(Al)-NH ₂	1,4-dioxane	90	3	96.0	[9]
10	Compound 1	DMF	80	3	93.5	[10]
11	1-Yb	No solvent	60	6	97.0	This work

 Table S5
 deacetalization-Knoevenagel condensation reaction

Fig. S14 ¹H NMR spectrum of the mixture products under CO_2 atmosphere catalyzed by 1-Yb in $CDCl_3$.

Fig. S15 ¹H NMR spectrum of the mixture products under CO₂ atmosphere catalyzed by 1-Eu in CDCl₃.

Fig. S16 ¹H NMR spectrum of the mixture products under CO_2 atmosphere catalyzed by 1-Yb in $CDCl_3$.

Fig. S17 ¹H NMR spectrum of the mixture products under CO_2 atmosphere catalyzed by 1-Yb in $CDCl_3$.

Fig. S18 ¹H NMR spectrum of the mixture products under CO_2 atmosphere catalyzed by 1-Yb in $CDCl_3$.

Fig. S19 ¹H NMR spectrum of the mixture products under N_2 atmosphere catalyzed by 1-Yb in CDCl₃.

Fig. S20 ¹H NMR spectrum of the mixture products under N_2 atmosphere catalyzed by 1-Yb in CDCl₃.

Fig. S21 ¹H NMR spectrum of the mixture products under N_2 atmosphere catalyzed by 1-Yb in CDCl₃.

Fig. S22 ¹H NMR spectrum of the mixture products under N_2 atmosphere catalyzed by 1-Yb in CDCl₃.

[1] T. Zhang, H. Chen, S. Liu, H. Lv, X. Zhang, Q. Li, Highly Robust $\{Ln_4\}$ -organic grameworks (Ln=Ho, Yb) for excellent catalytic performance on cycloaddition reaction of epoxides with CO₂ and Knoevenagel condensation. *ACS Catal.*, **2021**, 11, 14916-14925.

[2] C. Yao, S. Zhou, X. Kang, Y. Zhao, R. Yan, Y. Zhang, L. Wen, A cationic Zinc-organic framework with Lewis acidic and basic bifunctional sites as an efficient solvent-free catalyst: CO₂ fixation and Knoevenagel condensation reaction, *Inorg. Chem.*, **2018**, 57, 17, 11157-11164.

[3] H. Lv, L. Fan, H. Chen, X. Zhang, Y. Gao, Nanochannel-based {BaZn}-organic framework for catalytic activity on the cycloaddition reaction of epoxides with CO₂ and deacetalization-Knoevenagel condensation, *Dalton Trans.*, **2022**, 51, 3546–3556

[4] M.-L. Gao, M.-H. Qi, L. Liu, Z.-B. Han, An exceptionally stable core-shell MOF/COF bifunctional catalyst for a highly efficient cascade deacetalization-Knoevenagel condensation reaction, *Chem. Commun.*, **2019**, 55, 6377--6380.

[5] H. Lv, Z. Zhang, L. Fan, Y. Gao, X. Zhang, A nanocaged cadmium-organic framework with high catalytic activity on the chemical fixation of CO₂ and deacetalization-knoevenagel condensation, *Microporous Mesoporous Mater.*, **2022**, 335, 111791-111799.

[6] H. Chen, T. Zhang, S. Liu, H. Lv, L. Fan, X. Zhang, Fluorine-Functionalized NbO-Type $\{Cu_2\}$ -Organic Framework: Enhanced Catalytic Performance on the Cycloaddition Reaction of CO₂ with Epoxides and Deacetalization-Knoevenagel Condensation, *Inorg. Chem.*, **2022**, 61, 30, 11949–1195.

[7] Y. Zhang, Y. Wang, L. Liu, N. Wei, M.-L. Gao, D. Zhao, Z.-B. Han, Robust bifunctional lanthanide cluster based metal–organic frameworks (MOFs) for tandem deacetalization-Knoevenagel reaction. *Inorg. Chem.*, **2018**, 57, 2193–2198.

[8] H. Chen, S. Liu, H. Lv, Q.-P. Qin, X. Zhang, Nanoporous $\{Y_2\}$ -organic frameworks for excellent catalytic performance on the cycloaddition reaction of epoxides with CO₂ and deacetalization-Knoevenagel condensation. *ACS Appl. Mater. Interfaces*, **2022**, 14, 18589-18599.

[9] T. Toyao, M. Fujiwaki, Y. Horiuchi, M. Matsuoka, Application of an amino-functionalised metal–organic framework: an approach to a one-pot acid–base reaction, *RSC Adv.*, **2013**, 3, 21582–21587.

[10] A. Karmakar, M. M. A. Soliman, G. M. D. M. Rúbio, M. F. C. G. Silva, A. J. L. Pombeiro, Synthesis and catalytic activities of a Zn(II) based metallomacrocycle and a metal–organic framework towards one-pot deacetalization Knoevenagel tandem reactions under difffferent strategies: a comparative study, *Dalton Trans.*, **2020**, 49, 8075–8085.

[11] P.-Z. Li, X.-J. Wang, J. Liu, J. Lim, R. Zou, Y. Zhao, A Triazole-Containing Metal–Organic Framework as a Highly Effective and Substrate Size-Dependent Catalyst for CO₂ Conversion, *J. Am. Chem. Soc.* **2016**, 138, 2142–2145.

[12] J. Gu, X. Sun, X. Liu, Y. Yuan, H. Shana, Y. Liu, Highly efficient synergistic CO₂ conversion with epoxide using copper polyhedron-based MOFs with Lewis acid and base sites, *Inorg. Chem. Front.*, **2020**, *7*, 4517–4526

[13] X. Huang, X. Gu, H. Zhang, G. Shen, S. Gong, B. Yang, Y. Wang, Y. Chen, Decavanadatebased clusters as bifunctional catalysts for efficient treatment of carbon dioxide and simulant sulfur mustard, *Journal of CO*₂ *Utilization*, **2021**, 45, 101419-101427.