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S1 - Materials and Instruments

All chemicals were commercially available and used without further purification. IR spectra were 
recorded on a Nicolet-iS50 FT-IR spectrophotometer with KBr pellets in the region of 4000-400 
cm-1. The powder X-ray diffraction (PXRD) data were collected on a Rigaku SmartLab 9 kW 
Advance diffractionmeter with Cu-Kα radiation (λ = 1.5418 Å) at 298 K. Thermogravimetric 
analysis (TGA) was performed under nitrogen atmosphere on a TG/DSC-QMS analyzer with a 
heating rate of 20 °C/min. Argon and CO2 adsorption isotherms were measured on a Micromeritics 
ASAP 2460 system. The samples were degassed at 200 °C for 12 h prior to the measurements. 1H 
NMR spectra were measured on Bruker 500 MHz spectrometer by using tetramethylsilane (TMS) 
as the internal standard.

S2- Single-crystal X-ray diffraction analysis of MOF 1-Yb

Fig. S1 The asymmetric units in the 1-Yb
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Table S1 Crystal data and structure refinements for MOFs 1-Tb and 1-Yb

1-Tb 1-Yb

Empirical formula C31H30N3O8Tb C31H30N3O8Yb

Formula weight 731.50 745.62

Crystal system triclinic triclinic

Space group P-1 P-1

a/Å 8.8772(3) 8.8416(3)

b/Å 12.9580(3) 12.9176(5)

c/Å 14.1742(3) 14.0990(6)

α/°
113.037(2)

112.907(4)

β/°
93.343(2) 

93.312(3)

γ/°
106.968(2)

107.248(3)

Volume/Å3 1407.29(7)
1388.86(10)

Z 2 2

ρcalcg/cm3 1.726 1. 7883

μ/mm-1 2.571 3.426

F(000) 732.0 742.0

2θ range for data collection/° 4.892 to 61.284 4.92 to 61.508

Index ranges
-12≤ h ≤ 11
-16 ≤ k ≤ 17
-20 ≤ l ≤ 19

-12 ≤ h ≤ 12
-18 ≤ k ≤ 18
-19 ≤ l ≤ 20

GoF on F2 1.040 1.020

Final R indexes [I>=2σ (I)]
R1 = 0.0294

wR2 = 0.0605
R1 = 0.0400

wR2 = 0.0974

Final R indexes [all data]
R1 = 0.0332

wR2 = 0.0629
R1 = 0.0442

wR2 = 0.1006



S3- The powder X-ray diffraction data analysis
The powder X-ray diffraction (PXRD) data were collected on a Rigaku SmartLab 9 kW Advance 
diffractionmeter with Cu-Kα radiation (λ = 1.5418 Å) at 298 K. The PXRD patterns of as-
synthesized 1-Ln solids are in well agreement with their simulated ones, confirming the phase purity 
of the as-synthesized bulk samples. 

Fig. S2 The PXRD patterns of simulated, as-synthesized, and activated samples after adsorption 
experiments for 1-Ln. 

S4-Fourier-Transform infrared spectrum

Fig. S3 The FT-IR spectrum of 1-Ln indicating almost identical structures.



S5 - Thermogravimetric analysis
Thermogravimetric analysis (TGA) was performed under nitrogen atmosphere on a Netzsch STA 
449F5-QMS403C. TGA plot (black line) shows the sample loses all solvents (water, NMP) with a 
weight loss of 23.95%(1-Sm), 22.66%(1-Eu), 21.02%(1-Gd), 26.43%(1-Tb), 21.49%(1-Dy), 22.06% 
(1-Ho), 21.10%(1-Er), 21.63%(1-Yb) before 260 °C. Then, without clear plateau, it started to 
decompose.

Fig. S4 TGA plot of as-synthsized MOF 1-Ln.

S6 - The adsorption isotherms

Fig. S5 (a) the Ar adsorption isotherms of 1-Ln at 87 K. (b) the CO2 adsorption isotherms at 273 K. 
(c) the CO2 adsorption isotherms at 298 K. 



S7 - Isosteric heat of CO2 adsorption (Qst)
Isosteric heat of CO2 adsorption (Qst) was calculated by using the viral equation based on the 
isotherms at 273 K and 298 K.

Fig. S6 Isosteric heat of adsorption (Qst) calculated by the viral method, (a) 1-Sm, (b) 1-Eu, (c) 1-
Gd, (d)1-Tb, (e) 1-Dy, (f) 1-Ho, (g) 1-Er, (h) 1-Yb.   

S8-Catalytic cycloaddition of CO2 and epoxides

Table S2 Cycloaddition of various epoxides with CO2 catalyzed by 1-Yb under ambient conditions.

Entry Epoxides Product Yield (%)

1 99.0

2 97.0

3 37.0

4 10.0



The stability of the catalyst is proved by the cycle experiment of the catalyst, 1-Yb was simply 
filtrated after the reaction was completed and then washed with Purified water and methanol. The 
recovered 1-Yb could be used for successive five recycling runs. Importantly, the catalytic 
performance of 1-Yb remained high even after the five recycle runs, [yields of products: 98% (first 
run), 99%(second run), 97%(third run), 99%(fourth run), 98%(fifth run).

              

Fig. S7 The reaction results of CO2-epoxide cycloaddition reaction catalyzed by 1-Yb in recycle 
experiments. Reaction conditions: 4 mmol of epichlorohydrin, solvent free, CO2 (1 atm). 

  

Fig. S8 The PXRD patterns of 1-Yb (from bottom to up): the simulated, the as-synthesized,  after 
one recycle run, the one after three recycle runs, the one after five recycle runs.



Fig. S9  A plausible mechanism for the CO2-epoxide cycloaddition reaction over 1-Yb catalyst.

Table S3 Catalytic cycloaddition of CO2 and epoxides

S9-Catalytic deacetalization-Knoevenagel reactions

Table S4: The deacetalization-Knoevenagel condensation reaction of aldehyde derivatives 
containing difffferent groups

Entry Subtrate Product Yield (%)

1

O O
O

    

O O

100.0

Entry Materials Tem.(℃) Time(h) Yield(%) Ref.
1 NUC-38Yb 60 6 98.0 [1]

2 Compound 1 80 4 >99.0 [2]

3 NUC-51a 55 6 99.0 [3]

4 NUC-29 65 12 98.3 [5]

5 NUC-54 60 8 99.0 [6]

6 NUC-53 80 4 99.0 [8]

7 MOF 1 room temperature 48 85.0 [11]

8 JLU-Liu21 80 48 93.0 [12]

9 compound 1 room temperature 48 95.1 [13]

10 1-Yb room temperature 36 97.0 This work



2

O O

O
O

CN

CN

97.0

3

O O

Cl Cl

CN

CN

65.0

4

  

O O

Br    Br

CN

CN

98.0

The stability of the catalyst is proved by the cycle experiment of the catalyst. 1-Yb was simply 
filtrated after the reaction was completed and then washed with purified water and methanol. The 
recovered 1-Yb could be used for successive five recycling runs. Notably, the catalytic performance 
of 1-Yb remained high even after the five recycle runs, [0.5 mol% catalyst: yields of 98% (first run), 
97% (second run), 95% (third run), 93% (fourth run), 92% (fifth run); 0.3 mol% catalyst: yields of 
86% (first run), 85% (second run), 85% (third run), 83% (fourth run), 82% (fifth run)].        

 

Fig. S10 The reaction results of deacetalization-Knoevenagel condensation catalyzed by 1-Yb in 
recycle experiments. Reaction conditions: BD (1 mmol), MA (2 mmol), H2O (3 mmol), 
catalysts (0.5 mol% and 0.2 mol% respectively), 60 °C, 6 h, N2 atmosphere.



Fig. S11 The PXRD patterns of 1-Yb (from bottom to up): the simulated, the as-synthesized, the 
one after three recycle runs, the one after five recycle runs.

Fig. S12 Ar adsorption of the recovered 1-Yb, showing the microporosity of the framework.



Fig. S13 Plausible reaction mechanism of deacetalization-Knoevenagel condensation reaction 
catalyzed by 1-Yb.

Table S5  deacetalization-Knoevenagel condensation reaction 

Entry Catalyst Solvent Temperature(℃) Reaction time(h) Yield(%) Ref.

1 NUC-51a (1 mol%) DMSO 70 4 99.3 [3]

2 PCN-222-Co@TpPa-1 DMSO-d6 50 10 99.3 [4]

3 NUC-29 (1 mol%) DMSO 70 5 99.2 [5]

4 NUC-54 DMSO 60 5 99.0 [6]

5 Yb-BDC-NH2 DMSO-d6 50 24 97.0 [7]

6 Dy-BDC-NH2 DMSO-d6 50 24 82.0 [7]

7 Sm-BDC-NH2 DMSO-d6 50 24 76.0 [7]

8 NUC-53 DMSO 70 6 99.0 [8]

9 MIL-101(Al)-NH2 1,4-dioxane 90 3 96.0 [9]

10 Compound 1 DMF 80 3 93.5 [10]

11 1-Yb No solvent 60 6 97.0 This work



Fig. S14 1H NMR spectrum of the mixture products under CO2 atmosphere catalyzed by 1-Yb in 
CDCl3.

Fig. S15 1H NMR spectrum of the mixture products under CO2 atmosphere catalyzed by 1-Eu in 
CDCl3.

Fig. S16 1H NMR spectrum of the mixture products under CO2 atmosphere catalyzed by 1-Yb in 
CDCl3.



Fig. S17 1H NMR spectrum of the mixture products under CO2 atmosphere catalyzed by 1-Yb in 
CDCl3.

Fig. S18 1H NMR spectrum of the mixture products under CO2 atmosphere catalyzed by 1-Yb in 
CDCl3.

Fig. S19 1H NMR spectrum of the mixture products under N2 atmosphere catalyzed by 1-Yb in 
CDCl3.



Fig. S20 1H NMR spectrum of the mixture products under N2 atmosphere catalyzed by 1-Yb in 
CDCl3.

Fig. S21 1H NMR spectrum of the mixture products under N2 atmosphere catalyzed by 1-Yb in 
CDCl3.

Fig. S22 1H NMR spectrum of the mixture products under N2 atmosphere catalyzed by 1-Yb in 
CDCl3.
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