Supporting Information for

Effective Corrosion Inhibition of Mild Steel in Hydrochloric Acid by a Newly Synthesized Schiff Base Nano Co(II) and Cr(III) Complexes: Spectral, Thermal, Electrochemical and DFT (FMO, NBO) Studies

Saad Melhi¹, Mahmoud A. Bedair^{2,3, *}, Eid H. Alosaimi¹, Ayman A.O. younes¹, Walaa H. El-Shwiniy^{1,4}, Ahmed M. Abuelela³

¹Department of Chemistry, College of science, University of Bisha, P.O. Box 511, Bisha 61922, Saudi Arabia ²College of science and arts, University of Bisha, Al-Namas 61977, P.O. Box 101, Saudi Arabia ³Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University, Nasr City 11884, Cairo, Egypt ⁴Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.

Fig. S1: Infrared spectra for HL ligand and its complexes.

Fig. S2: ¹H NMR spectrum for HL and its complexes.

Fig. S3 Molecular electrostatic potential map of HL ligand.

Type*	Occupancy	Energy	NBO	s %	р%	s %	р %
				(Atom 1)	(Atom 1)	(Atom 2)	(Atom 2)
$BD(2)C_5-C_6$	1.66370	-0.24638	0.6968 p + 0.7172 p	0.00	99.95	0.00	99.96
$BD(2)C_3-C_4$	1.63715	-0.24699	0.6961 p + 0.7180 p	0.00	99.96	0.00	99.98
$BD(2)C_1-C_2$	1.65809	-0.24871	0.7018 p + 0.7124 p	0.00	99.96	0.00	99.96
$LP(2)(O_{11})$	1.97575	-0.26031	p ^{1.00}	0.01	99.73	-	-
$BD(2)C_7-C_8$	1.93923	-0.32113	0.6460 p + 0.7633 p	0.01	99.89	0.02	99.72
$LP(2)(O_{12})$	1.97654	-0.33105	p ^{1.00}	00.00	99.88	-	-
$LP(1)(N_8)$	1.91109	-0.35146	sp ^{2.30}	30.30	69.57	-	-
$BD(2)C_{10}-C_{11}$	1.99249	-0.39203	0.5543 p + 0.8323 p	0.40	99.40	0.60	99.05

Table S1 NBOs at inhibitor-metal interactions ordered according to their energies (highest to lowest).

*LP(1): refers to first lone pair, LP(2): second lone pair, etc. BD(1): bonding orbital of a single bond, BD(2): for double bond.

 Table S2 Calculated NBOs densities of Co(II)-L at expected inhibitor-metal interactions.

 Table S3 Calculated NBOs densities of Cr(III)-L at expected inhibitor-metal interactions.

Atoms	Charges ^a	f^+	f^{-}	Δf^b
N ₈	-0.189	0.085	0.114	0.029
C_7	0.056	0.042	0.109	0.067
C_1	-0.039	0.106	0.098	-0.008
C_5	-0.032	0.058	0.061	0.003
C_2	-0.047	0.062	0.056	-0.006
C ₃	-0.042	0.051	0.054	0.003
C_4	-0.008	0.076	0.051	-0.025
O ₁₁	-0.298	0.101	0.050	-0.051
C_6	-0.043	0.047	0.049	0.002
C_9	-0.001	0.027	0.026	-0.001
C ₁₀	0.232	0.032	0.019	-0.013
O ₁₂	-0.191	0.031	0.007	-0.024

 Table S4 Condensed Fukui functions of ligand molecule.

^aHirshfeld charges at B3LYP/6-31G(d,p). ^b $\Delta f = f^- - f^+$.