Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Ligand Functionalization of Defect-Engineered Ni-MOF-74

Jaewoong Lim,[‡] Seonghwan Lee,[‡] Amitosh Sharma, Junmo Seong, Seung Bin Baek* and

Myoung Soo Lah*

Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919,

Korea

E-mail: sbbaek@unist.ac.kr; mslah@unist.ac.kr

Experimental section

General procedure

The reagents were purchased from commercial sources and used without further purification. Powder X-ray diffraction (PXRD) patterns were recorded using a Bruker D2 Phaser automated diffractometer at room temperature with a step size of $2\theta = 0.02^{\circ}$. Solution-state ¹H nuclear magnetic resonance (NMR) spectra of acid digested samples in DMSO-d₆, DCl (35%), and D₂SO₄ were recorded using a Bruker 400 MHz FT-NMR spectrometer at the UNIST Central Research Facilities. The ¹H chemical shifts were referenced to the residual proton resonance of the DMSO-d₆ solvent in ppm. Thermogravimetric analysis (TGA) was performed using an STD Q-600 series instrument (TA Instruments Inc.) at a heating rate of 10 °C min⁻¹ under an N₂ flow.

Gas adsorption measurements

Samples in amount of 20–40 mg were pretreated at 150 °C under vacuum for 24 h prior to gas adsorption measurements. N₂ adsorption/desorption isotherms were measured at 77 K using a BELSORP-Max (BEL Japan, Inc.) low-pressure adsorption measuring system employing a standard volumetric technique up to saturation pressure. The adsorption data in the pressure range of $< 0.1 P/P_0$ were fitted to the Brunauer–Emmett–Teller (BET) equation to determine the BET surface area using the BELMaster software (BEL Japan). CO₂ adsorption/desorption isotherms were recorded using the BELSORP-Max adsorption measuring system equipped with a temperature control unit. For all defect-engineered Ni-MOF-74 derivatives, the CO₂ adsorption isotherms were measured at 273 K up to 1 bar. For the defect-engineered derivatives selected for isosteric heat of adsorption (Q_{st}) calculations, CO₂ adsorption data were manipulated with BEL-Master software provided by BEL Japan Inc.

Calculation of the Isosteric heat of adsorption

Virial equation (1) was employed to calculate the isosteric heat of adsorption (Q_{st}) for CO₂ in the defect-engineered Ni-MOF-74.^{S1}

In equation (1), p is the pressure of the gas phase at equilibrium (kPa), N is the adsorbed amount per mass of adsorbent (mmol g⁻¹), T is the absolute temperature (K), a_i and b_j are virial coefficients, and m and n represent the number of coefficients required to adequately fit the isotherms. The coverage-dependent isosteric heat of adsorption Q_{st} was evaluated using equation (2).

$$Q_{st} = -R \sum_{i=0}^{m} a_i N^i \qquad (2)$$

In equation (2), *R* is the universal gas constant (8.314 J K⁻¹ mol⁻¹). The virial coefficients were derived by fitting the experimental adsorption isotherms (ln *p* versus *N*) measured at 273 K, 283 K, and 293 K. The fitted parameter values are presented in Electronic Supplementary Information (ESI).

Figure S1. ¹H NMR spectra of acid digested 5-fSA_x(a/b). (a) 5-fSA_{0.08}(9/1), (b) 5-fSA_{0.21}(7/3), and (c) 5-fSA_{0.39}(5/5). In 5-fSA_x(a/b), **x** is the estimated molar fraction of the fragmented ligand, H₂-5-fSA, in the framework from the ¹H NMR spectrum, and a/b is the molar ratio of H₄DOBDC and H₂-5-fSA used to prepare the defect-engineered Ni-MOF-74.

Figure S2. ¹H NMR spectra of acid digested $3-hSA_{x}$. (a) $3-hSA_{0.06}(9/1)$, (b) $3-hSA_{0.21}(7/3)$, and (c) $3-hSA_{0.41}(5/5)$.

Figure S3. ¹H NMR spectra of acid digested **2-hNA_x**. (a) **2-hNA_{0.06}**(9/1), (b) **2-hNA_{0.17}**(7/3), and (c) **2-hNA_{0.29}**(5/5).

Figure S4. ¹H NMR spectra of acid digested 5-hBImCA_x. (a) 5-hBImCA_{0.04}(9/1), (b) 5-hBImCA_{0.12}(7/3), and (c) 5-hBImCA_{0.20}(5/5).

Figure S5. Thermogravimetric analysis of defect-engineered Ni-MOF-74. (a) 5-fSA_x, (b) 3- hSA_x , (c) 2- hNA_x , and (d) 5- $hBImCA_x$.

Figure S6. Comparison of PXRD patterns for defect-engineered Ni-MOF-74 before and after exposure to boiling water for 3 days. (a) $5-fSA_x$, (b) $3-hSA_x$, (c) $2-hNA_x$, and (d) $5-hBImCA_x$.

Figure S7. Nonlocal density functional theory (NLDFT) pore-size distribution of (a) $5-fSA_x$, (b) $3-hSA_x$, (c) $2-hNA_x$, and (d) $5-hBImCA_x$.

Figure S8. Nonlocal density functional theory (NLDFT) pore-size distribution and cumulative pore volume of $3-hSA_{0.41}$. The black line and squares represent the cumulative pore volume, and the red line and squares represent the pore-size distribution.

Figure S9. The overall correlation of CO_2 uptakes with (a) surface areas and (b) pore volumes of defect-engineered Ni-MOF-74 derivatives.

Figure S10. (a) CO₂ sorption isotherms of **5-fSA**_{0.08} recorded at 273 K, 283 K, and 293 K. (b) virial analysis of isotherms.

Figure S11. (a) CO₂ sorption isotherms of **5-hSA**_{0.06} recorded at 273 K, 283 K, and 293 K. (b) virial analysis of isotherms.

Figure S12. (a) CO₂ sorption isotherms of **2-hNA**_{0.06} recorded at 273 K, 283 K, and 293 K. (b) virial analysis of isotherms.

Figure S13. (a) CO₂ sorption isotherms of **5-hBImCA**_{0.12} recorded at 273 K, 283 K, and 293 K. (b) virial analysis of isotherms.

Figure S14. (a) CO₂ sorption isotherms of defect-free Ni-MOF-74 recorded at 273 K, 283 K, and 293 K. (b) virial analysis of isotherms.

Sample	Doping Linker	Feeding ratio/%	Doped ratio/%
5-fSA _{0.08}	H ₂ -5-fSA	10	8
5-fSA _{0.21}	H ₂ -5-fSA	30	21
5-fSA _{0.39}	H ₂ -5-fSA	50	39
3-hSA _{0.06}	H ₂ -3-hSA	10	6
3-hSA _{0.21}	H ₂ -3-hSA	30	21
3-hSA _{0.41}	H ₂ -3-hSA	50	41
2-hNA _{0.06}	H ₂ -2-hNA	10	6
2-hNA _{0.17}	H ₂ -2-hNA	30	17
2-hNA _{0.29}	H ₂ -2-hNA	50	29
5-hBImCA _{0.04}	H ₂ -5-hBImCA	10	4
5-hBImCA _{0.12}	H ₂ -5-hBImCA	30	12
5-hBImCA _{0.20}	H ₂ -5-hBImCA	50	20

 Table S1. Doping ratios of fragmented ligands in the defect-engineered Ni-MOF-74.

Sample	$BET/m^2 g^{-1}$	Pore volume/cm ³ g ⁻¹
5-fSA _{0.08}	1325	0.586
5-fSA _{0.21}	1209	0.670
5-fSA _{0.39}	894	0.517
3-hSA _{0.06}	1323	0.608
3-hSA _{0.21}	1042	0.607
3-hSA _{0.41}	640	0.456
2-hNA _{0.06}	1325	0.575
2-hNA _{0.17}	1156	0.550
2-hNA _{0.29}	934	0.570
5-hBImCA _{0.04}	1196	0.539
5-hBImCA _{0.12}	1189	0.514
5-hBImCA _{0.20}	1038	0.486

 Table S2. BET surface areas and pore volumes of defect-engineered Ni-MOF-74.

Supplementary Reference

S1. A. Nuhnen and C. Janiak, *Dalton Trans.*, 2020, **49**, 10295–10307.