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Figure S1. Nitrogen adsorption isotherms of activated carbons derived from PET
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Figure S2. SEM images of activated carbons derived from PET and their corresponding EDX 
mapping showing the distribution of C, N, and O elements in the materials.
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Table S1. Electrochemical performance data of the charge-discharge curves for the 1st, 2nd, 
30th, and 100th cycles of the carbon anode materials derived from PET cycled at a current density 
of 100 mA/g between 0.01 - 2.8 V (vs. Li/Li+) at 25oC.

Samples PET-P-A PET-CU-A PET-P-A-ITP2 PET-CU-A-ITP2

Charge capacity (mAh/g) 94.44 54.57 156.88 242.81
Discharge capacity (mAh/g) 583.65 226.67 401.18 460.65
Capacity Loss (mAh/g) 489.21 172.10 244.30 217.84

1st cycle

Coulombic efficiency (%) 16.18 24.08 39.11 52.71
Charge capacity (mAh/g) 103.36 99.62 164.23 255.23
Discharge capacity (mAh/g) 173.77 160.26 197.31 282.65
Capacity Loss (mAh/g) 70.41 60.64 33.08 27.42

2nd cycle

Coulombic efficiency (%) 59.48 62.16 83.24 90.30
Charge capacity (mAh/g) 268.61 129.20 202.20 294.32
Discharge capacity (mAh/g) 278.51 135.42 205.07 295.99
Capacity Loss (mAh/g) 9.90 6.22 2.87 1.67

30th cycle

Coulombic efficiency (%) 96.45 95.41 98.60 99.44
Charge capacity (mAh/g) 268.37 131.46 184.19 275.40
Discharge capacity (mAh/g) 288.16 131.74 185.48 276.11
Capacity Loss (mAh/g) 19.79 0.28 1.29 0.71

100th cycle

Coulombic efficiency (%) 93.13 99.79 99.31 99.74
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Figure S3: Galvanostatic charge-discharge profiles (1st and 2nd cycles) of the carbon anode 
materials derived from PET cycled at a current density of 50 mA/g between 0.01 - 2.8 V (vs. 
Li/Li+) at 25oC.

Table S2. Electrochemical performance data of the charge-discharge curves for the 1st and 2nd 
cycles of the carbon anode materials derived from PET cycled at a current density of 50 mA/g 
between 0.01 - 2.8 V (vs. Li/Li+) at 25oC.

Samples PET-P-A PET-CU-A PET-P-A-ITP2 PET-CU-A-ITP2

Charge capacity (mAh/g) 242.60 361.50 290.57 377.23
Discharge capacity (mAh/g) 1190.76 768.48 636.06 650.42
Capacity Loss (mAh/g) 948.16 406.98 345.49 273.19

1st cycle

Coulombic efficiency (%) 20.37 47.04 45.68 58.00
Charge capacity (mAh/g) 242.60 361.50 272.67 362.41
Discharge capacity (mAh/g) 351.40 367.26 294.12 386.71
Capacity Loss (mAh/g) 108.80 5.76 21.45 24.30

2nd cycle

Coulombic efficiency (%) 69.04 98.43 92.71 93.72
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Figure S4: Rate performance test - galvanostatic charge-discharge profiles (10th cycle) of PET-
P-A and PET-CU-A-ITP2 anodes cycled at varying current densities (100 – 2000 mA/g) 
between 0.01 - 2.8 V (vs. Li/Li+) at 25 oC.
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Table S3. Comparison of PET-CU-A-ITP2 carbon with the state-of-the-art LIBs 

Material Initial 
Coulombic 
Efficiency (%)

Discharge capacity 
(2nd cycle) mAh/g

References

PET-CU-A-ITP2 58 387 at 50 mA/g This work
Carbon 
nanoparticles

55 742 at 100 mA/g [1]

Porous carbon 
nanofibres

66 491 at 50 mA/g [2]

Carbon 
nanofibres

NA 483 at 50 mA/g [3]

Banana peel 
derived carbon

69 826 at 50 mA/g [4]

Graphene 38 580 at 25 mA/g [5]
Nitrogen doped 
graphitic carbons 
Carbon aerogels

49

63

840 at 50 mA/g

310 at C/10

[6]

[7]
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