SUPPLEMENTARY MATERIAL

Ce-modified Co-Mn oxide spinel on reduced graphene oxide and carbon black as ethanol tolerant oxygen reduction electrocatalyst in alkaline media

Sigrid Wolf^{1,*}, Michaela Roschger¹, Boštjan Genorio², Daniel Garstenauer¹, Josip Radić³, Viktor Hacker¹

 ¹ Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria
 ² Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia

³ Department of Environmental Chemistry, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, 21000 Split, Croatia

* Corresponding author:

Sigrid Wolf

Graz University of Technology, Institute of Chemical Engineering and Environmental Technology

Inffeldgasse 25/C, AUT-8010 Graz

E-mail: <u>sigrid.wolf@tugraz.at</u>

Fig. S1 EDX results of Ce-CMO/VC.

Fig. S2 EDX results of Ce-CMO/rGO-VC.

Fig. S3 Thermogravimetric behavior and mass spectrometry results of CMO/VC in O₂/Ar atmosphere.

Fig. S4 CVs of Ce-CMO/VC, Ce-CMO/rGO-VC, CeO₂/VC, CMO/VC and Pt/C catalysts at 10 mV s⁻¹ in de-aerated 1 M KOH/1 M EtOH.

Fig. S5. Potentiodynamic ORR curves of CeO_2/VC (a), CMO/VC (b) and comm. Pt/C (c) in O_2 -saturated 1 M KOH or 1 M KOH/1 M EtOH at 10 mV s⁻¹ at different rotation rates.

Material	<i>с_{кон}/</i> М	E _{1/2} /V _{Reference}	<i>j_D</i> /mA cm⁻²	n/	Tafel slope/mV dec-1	Reference
Ce@Co ₃ O ₄ /CNFs	0.1	0.810 V _{RHE}	-5.03	~4	85.8	1
Co ₃ O ₄ -CeO ₂ /C	0.1	~0.83 V _{RHE}	approx5.35	3.91	83.9	2
Co ₃ O ₄ @Z67-NT@CeO ₂	0.1	0.88 V _{RHE}	approx6.8	~4	66.8	3
MnOOH@CeO ₂	0.1	$0.80 V_{\text{RHE}}$	-5.08	3.95	111.1	4
CoO _x /CeO ₂ /RGO	0.1	0.83 V _{RHE}	approx5.0	3.8	54	5
MnO _x -CeO ₂ /KB	0.1	0.81 V _{RHE}	approx5.0	~4	94.4	6
4.8% Ce-MnO ₂ /C	0.1	0.783 V _{RHE}	approx5.6	3.97	90	7
0.5% Ce-Co ₃ O ₄	0.1	0.665 V _{RHE}	approx5.5	~4	108 and 60	8
CeOMS-2	1.0	~0.05 V _{Hg/HgO}	approx0.6**	3.4	-	9
CeO ₂ /MnWO ₄ -2	0.1	0.827 V _{RHE}	-4.2	3.1	-	10
5% Ce-MnO _x /Ag	0.1	~0.88 V _{RHE}	approx5.4	3.98	50	11
CeO ₂ -CoO _x /N-rGO	-	approx0.1 V _{Ag/AgCl}	approx6.5	4.2	-	12
Co-CeO ₂ /N-CNR	0.1	0.819 V _{RHE} *	approx6.7	3.95	58.4	13
5% Mn-CeO ₂ /rGO	0.1	-0.336 V _{Ag/AgCI}	-4.83	3.6	-	14
a-MnO2/Mn3O4/CeO2/C	0.1	-0.24 V _{Ag/AgCI}	-6.63	~4	921.9	15
Ce-CMO-18%/MWCNTs	0.1	0.84 V _{RHE} *	approx6.6	~4	84	16
Ce-CMO/VC	1.0	$0.828 V_{\text{RHE}}$	-2.84	3.27	57.2	This work
Ce-CMO/rGO-VC	1.0	0.822 V _{RHE}	-2.93	3.48	61.0	This work

Table S1. Comparison of Ce-CMO/C with other catalysts combining cerium, manganese and cobalt oxides.

 c_{KOH} = KOH electrolyte concentration; $E_{1/2}$ = half-wave potential; j_D = diffusion limited current density; *n* = electron transfer number; * potential at 3 mA cm⁻² is given instead of $E_{1/2}$; ** j_D is given in mA instead of mA cm⁻².

Fig. S6. Tafel plot of Ce-CMO/VC and Ce-CMO/rGO-VC.

Table S2. Limiting current density of the Ce-CMO/VC and Ce-CMO/rGO-VC catalysts,	CMO/VC and
CeO ₂ /VC without/with EtOH at different rpm.	

Catalysts	400 rpm/ mA cm ⁻²	600 rpm/ mA cm ⁻²	900 rpm/ mA cm ⁻²	1200 rpm/ mA cm ⁻²	1600 rpm/ mA cm ⁻²	2000 rpm/ mA cm ⁻²
CeO ₂ /VC	-1.03/-0.84	-1.26/-1.01	-1.55/-1.21	-1.81/-1.38	-2.12/-1.58	-2.39/-1.76
CMO/VC	-1.29/-0.95	-1.54/-1.13	-1.85/-1.36	-2.12/-1.55	-2.44/-1.78	-2.77/-1.99
Ce-CMO/VC	-1.45/-1.30	-1.75/-1.53	-2.13/-1.80	-2.46/-2.03	-2.84/-2.28	-3.22/-2.58
Ce-CMO/rGO-VC	-1.52/-1.32	-1.82/-1.57	-2.20/-1.87	-2.52/-2.14	-2.93/-2.46	-3.30/-2.80

References

- 1 X. Sun, T. Xu, W. Sun, J. Bai and C. Li, *J. Alloys Compd.*, 2022, **898**, 162778.
- 2 K. Liu, X. Huang, H. Wang, F. Li, Y. Tang, J. Li and M. Shao, *ACS Appl. Mater. Interfaces*, 2016, **8**, 34422–34430.
- X. Li, S. You, J. Du, Y. Dai, H. Chen, Z. Cai, N. Ren and J. Zou, *J. Mater. Chem.* A, 2019, **7**, 25853–25864.
- 4 D. Liu, J. Tian, Y. Tang, J. Li, S. Wu, S. Yi, X. Huang, D. Sun and H. Wang, *Chem. Eng. J.*, 2021, **406**, 126772.
- 5 H. Zhong, L. Alberto Estudillo-Wong, Y. Gao, Y. Feng and N. Alonso-Vante, *J. Energy Chem.*, 2021, **59**, 615–625.
- J. Chen, N. Zhou, H. Wang, Z. Peng, H. Li, Y. Tang and K. Liu, *Chem. Commun.*, 2015, **51**, 10123–10126.
- S. Sun, Y. Xue, Q. Wang, H. Huang, H. Miao and Z. Liu, *Electrochim. Acta*, 2018, 263, 544–554.
- L. Wang, Q. Liu, N. Ta, H. Fan and E. Wang, *ChemistrySelect*, 2021, 6, 3512– 3518.
- N. Vilas Bôas, J. B. Souza Junior, L. C. Varanda, S. A. S. Machado and M. L.
 Calegaro, *Appl. Catal. B Environ.*, 2019, 258, 118014.
- M. Sridharan and T. Maiyalagan, *J. Mater. Sci. Mater. Electron.*, 2022, **33**, 9538– 9548.
- 11 W. Wang, J. Q. Chen, Y. R. Tao, S. N. Zhu, Y. X. Zhang and X. C. Wu, *ACS Catal.*, 2019, **9**, 3498–3510.
- 12 B. Ge, T. Yue, J. Liu, X. Wu, B. Chen, Y. Li and Z. Yang, *Mater. Res. Express*, 2021, **8**, 035510.
- A. Sivanantham, P. Ganesan and S. Shanmugam, *Appl. Catal. B Environ.*, 2018, 237, 1148–1159.
- 14 I. Hota, S. Soren, B. D. Mohapatra, A. K. Debnath, K. P. Muthe, K. S. K. Varadwaj and P. Parhi, *J. Electroanal. Chem.*, 2019, **851**, 113480.

- B. Chutia, N. Hussain, P. Puzari, D. Jampaiah, S. K. Bhargava, E. V. Matus, I. Z.
 Ismagilov, M. Kerzhentsev and P. Bharali, *Energy and Fuels*, 2021, **35**, 10756– 10769.
- 16 X. Chen, F. Han, X. Chen, C. Zhang and W. Gou, *Catalysts*, 2022, **12**, 1122.