Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Fig. S1 Energy-dispersive X-ray spectroscopy of $Fe_3O_4@SiO_2$ -APTES- Fe_2L^{DAR} .

Fig. S2 XRD pattern of $Fe_3O_4@SiO_2$ -APTES- Fe_2L^{DAR} .

Fig. S3 (A) TGA and DTG analyses of Fe₃O₄@SiO₂-APTES, (B) Fe₃O₄@SiO₂-APTES-H₂L^{DAR}, (C) Fe₃O₄@SiO₂-APTES-Fe₂L^{DAR}.

Fig. S4 Magnetization curve of $Fe_3O_4@SiO_2-APTES-Fe_2L^{DAR}$.

Fig. S5 The X-ray photoelectron spectroscopy (XPS) spectrum of catalyst ($Fe_3O_4@SiO_2-APTES-Fe_2L^{DAR}$).

Table S1 Optimization for the oxidation of ethylbenzene.

Entry	Catalyst [mg]	Solvent	O ₂ /Ar	TBHP ^a	T [h]	Conv. ^ь [%]	Sel.º [%] to A
1	30.0 ^d	H ₂ O	O ₂	2	8	83	100
2	30.0 ^d	H ₂ O	02	-	2	6	100
3	30.0 ^d	H ₂ O	O ₂	-	5	21	100
4	30.0 ^d	H ₂ O	O ₂	-	10	52	100
5	30.0 ^d	H ₂ O	O ₂	-	15	100	100
6	40.0 ^e	H ₂ O	O ₂	-	15	100	100
7	40.0 ^e	H ₂ O	O ₂	-	12	87	100
8	20.0 ^f	H ₂ O	O ₂	-	15	94	100
9	10.0 ^g	H ₂ O	02	-	15	71	100
10 ^h	-	H ₂ O	02	-	15	trace	trace
11 ⁱ	30.0 ^d	H ₂ O	0 ₂	-	15	trace	trace

Reaction conditions: Catalyst, Substrate (1 mmol), O₂ balloon, H₂O (1 mL), T= room temperature.

[a] TBHP (70% in H_2O).

[b] Conversions were determined by GC using biphenyl as an internal standard (molar ratio of substrate to internal standard is 1:1).
 [c] Selectivity % = [(Product %) / (Products %)] × 100.

[d] 30.0 mg \approx 0.9 mol% [e] 40.0 mg \approx 1.2 mol% [f] 20.0 mg \approx 0.6 mol%. [g] 10.0 mg \approx 0.3 mol%.

[h] In the absence of catalyst.

[i] Reference test in the presence of FeCl₃.

Table S2 Optimization for the oxidation of toluene.

Entry	Catalyst type and amount[mg]	Solvent	O ₂ /Ar	TBHP ^a	T [h]	Conv.⁵ [%]	Sel.º [%] to C
1 ^d	-	H ₂ O	02	2	20	-	-
2 ^e	$Fe_3O_4@SiO_2APTESFe_2L^{DAR}$ 30.0	H ₂ O	02	2	18	45	100
3 ^e	$Fe_3O_4@SiO_2APTESFe_2L^{DAR}$ 30.0	H ₂ O	02	3	18	72	100
4 ^f	$Fe_3O_4@SiO_2APTESFe_2L^{DAR}$ 40.0	H ₂ O	O ₂	3	18	83	100
5 ^g	$Fe_3O_4@SiO_2APTESFe_2L^{DAR}$ 50.0	H ₂ O	02	3	18	87	100
6 ^f	$Fe_3O_4@SiO_2APTESFe_2L^{DAR}$ 40.0	H ₂ O	O ₂	3	20	91	100
7 ^e	$Fe_3O_4@SiO_2APTESFe_2L^{DAR}$ 30.0	H ₂ O	02	3	20	82	100
8 ^h	Fe₃O₄@SiO₂APTES 40.0	H ₂ O	02	3	20	94	1
9 ⁱ	Fe ₃ O ₄ @SiO ₂ APTESH ₂ L ^{DAR} 40.0	H ₂ O	02	3	20	95	3
10 ¹	$Fe_3O_4@SiO_2APTESFe_2L^{DAR}$ 40.0	H ₂ O	Ar	3	20	95	8

Reaction conditions: Catalyst, Substrate (1 mmol), O_2 balloon, H_2O (1 mL), T = room temperature.

[a] TBHP (70% in H_2O).

[b] Conversions were determined by GC using biphenyl as an internal standard (molar ratio of substrate to internal standard is 1:1).
 [c] Selectivity % = [(Product %) / (Products %)] × 100.

[d] In the absence of catalyst .

[e] 30.0 mg \approx 0.9 mol%. [f] 40.0 mg \approx 1.2 mol%. [g] 50.0 mg \approx 1.5 mol%.

[h] Reference test in the presence of $Fe_3O_4@SiO_2APTES$.

[i] Reference test in the presence of $Fe_3O_4@SiO_2APTESH_2L^{DAR}$.

[I] Reference test in the absence of O₂ balloon (under Ar atmosphere)

Table S3 Optimization for the oxidation of 1-hexene.

\sim	Catalyst O ₂ balloon / Na ₂ SO ₃ CH ₃ CN (2 mL) / RT	OH +	\sim	в			
Entry	Catalyst type and amount[mg]	Solvent	O ₂ /Ar	Na ₂ SO ₃ ª [mmol]	T [h]	Conv. ^ь [%]	Sel.c [%] to A
1 ^d	-	CH₃CN	02	2	15	-	-
2 ^e	$Fe_3O_4@SiO_2APTESFe_2L^{DAR}$ 30.0	CH₃CN	O ₂	2	15	48	100
3 ^f	$Fe_3O_4@SiO_2APTESFe_2L^{DAR}$ 40.0	CH₃CN	0 ₂	2	15	72	100
4 ^g	$Fe_3O_4@SiO_2APTESFe_2L^{DAR}$ 50.0	CH₃CN	02	2	15	94	100
5 ^g	$Fe_3O_4@SiO_2APTESFe_2L^{DAR}$ 50.0	CH₃CN	0 ₂	2	10	57	100
6 ^g	$Fe_3O_4@SiO_2APTESFe_2L^{DAR}$ 50.0	CH ₃ CN	0 ₂	1	15	67	100
7 ^g	$Fe_3O_4@SiO_2APTESFe_2L^{DAR}$ 50.0	CH₃CN	O ₂	3	15	90	100
8 ^g	$Fe_3O_4@SiO_2APTESFe_2L^{DAR}$ 50.0	CH₃CN	O ₂	-	15	24	100
9 g	$Fe_3O_4@SiO_2APTESFe_2L^{DAR}$ 50.0	Solvent free	O ₂	2	15	-	-
10 ^g	$Fe_3O_4@SiO_2APTESFe_2L^{DAR}$ 50.0	$H_2O/acetone$	O ₂	2	15	84	100
11 ^h	Fe₃O₄@SiO₂APTES 50.0	CH₃CN	02	2	15	-	-
12 ⁱ	Fe ₃ O ₄ @SiO ₂ APTESH ₂ L ^{DAR} 50.0	CH₃CN	0 ₂	2	15	-	-
13 ¹	$Fe_3O_4@SiO_2APTESFe_2L^{DAR}$ 50.0	CH₃CN	Ar	2	15	74	100
14 ^m	FeCl₃ 50.0	CH₃CN	02	2	15	-	-

Reaction conditions: Catalyst, Substrate (2 mmol), O₂ balloon, CH₃CN (2 mL), T = room temperature.

[a] Na₂SO₃ (2 mmol, 0.24 g).

[b] Isolated yield.

[c] Selectivity % = [(Product %) / (Products %)] × 100.

[d] In the absence of catalyst.

[e] 30.0 mg \approx 0.9 mol%. [f] 40.0 mg \approx 1.2 mol%. [g] 50.0 mg \approx 1.5 mol%. [h] Reference test in the presence of Fe₃O₄@SiO₂APTES.

[i] Reference test in the presence of $P_{3}O_{4}@SiO_{2}APTESH_{2}D^{DAR}$. [i] Reference test in the absence of O_{2} balloon (under Ar atmosphere).

[m] Reference test in the presence of $\ensuremath{\mathsf{FeCl}}_3.$

Table S4 Optimization for the oxidation of cyclohexene.

\bigcap	Catalyst		соон	Соон	\sim	
\sim	O ₂ balloon / Na ₂ SO ₃ CH ₃ CN (2 mL) / RT	A	∽соон В	Соон	D	COOH
Entry	Catalyst [mg]	Solvent	O ₂ /Ar	$Na_2SO_3^a$	T [h]	Yield ^ь [%]
1 ^f	-	CH₃CN	02	2	24	-
2	30.0 ^c	CH₃CN	O ₂	2	24	57
3	40.0 ^d	CH₃CN	O ₂	2	24	78
4	50.0 ^e	CH₃CN	02	2	24	87
5	50.0 ^e	CH₃CN	02	2	15	65
6	50.0 ^e	CH₃CN	02	1	24	58
7	50.0 ^e	CH₃CN	02	-	24	-
8	50.0 ^e	$H_2O/acetone$	02	2	24	80
9	50.0 ^e	Toluene	02	2	24	-
10	50.0 ^e	CHCl ₃	02	2	24	-
11	30.0 ^c	Solvent free	O ₂	2	24	-

Reaction conditions: Catalyst, Substrate (2 mmol), O_2 balloon, CH₃CN (2 mL), T= room temperature. [a] Na₂SO₃ (2 mmol, 0.24 g). [b] Isolated yield. [c] 30.0 mg \approx 0.9 mol% [d] 40.0 mg \approx 1.2 mol% [e] 50.0 mg \approx 1.5mol%. [f] In the absence of catalyst.

 Table S5 Optimization of the reaction conditions for synthesis of 7. 5,7-Di-tert-butyl-2-(4-bromophenyl)benzo[d]oxazole.

Entry	Catalyst/mol %	solvent	temp.	time (h)	Yield ^a (%)
1 ^c	Fe ₃ O ₄ @SiO ₂ -APTESFe ₂ L ^{DAR} /1.2	Solvent free	25	24	-
2 ^c	Fe ₃ O ₄ @SiO ₂ -APTESFe ₂ L ^{DAR} /1.2	Solvent free	70	24	18
3°	Fe ₃ O ₄ @SiO ₂ -APTESFe ₂ L ^{DAR} /1.2	H ₂ O	25	24	36
4 ^c	Fe ₃ O ₄ @SiO ₂ -APTESFe ₂ L ^{DAR} /1.2	H₂O	70	24	97
5°	Fe ₃ O ₄ @SiO ₂ -APTESFe ₂ L ^{DAR} /1.2	H₂O	70	10	97
6 ^c	Fe ₃ O ₄ @SiO ₂ -APTESFe ₂ L ^{DAR} /1.2	H ₂ O	70	7	75
7 ^b	Fe ₃ O ₄ @SiO ₂ -APTESFe ₂ L ^{DAR} /0.9	H₂O	70	10	79
8 ^d	Fe ₃ O ₄ @SiO ₂ -APTESFe ₂ L ^{DAR} /1.5	H₂O	70	10	95
9 ^d	Fe ₃ O ₄ @SiO ₂ -APTESFe ₂ L ^{DAR} /1.5	H ₂ O	70	7	71
10 ^e	Fe ₃ O ₄ @SiO ₂ -APTESFe ₂ L ^{DAR} /1.2	H₂O	70	10	84
11 ^f	Fe ₃ O ₄ @SiO ₂ -APTESFe ₂ L ^{DAR} /1.2	H₂O	70	10	77
12 ^g	Fe ₃ O ₄ @SiO ₂ -APTESH ₂ L ^{DAR} /1.2	H₂O	70	10	17
13 ^h	Fe ₃ O ₄ @SiO ₂ -APTES/1.2	H₂O	70	10	8
14 ⁱ	FeCl ₃ /1.2	H ₂ O	70	10	-
15	-	H₂O	70	10	-

Reaction conditions: Catalyst, 3,5-di-tert-buthylbenzene-1,2-diol (0.5 mmol), NH₄OAc (0.5 mmol) and 4-bromobenzaldehyde (0.5 mmol), H₂O (7 mL).

[a] Isolated yield.

[b] 30.0 mg \approx 0.9 mol% [c] 40.0 mg \approx 1.2 mol% [d] 50.0 mg \approx 1.5 mol%. [e] NH₄OAc (1 mmol) [f] NH₄OAc (2 mmol).

[g] Reference test in the presence of $Fe_3O_4@SiO_2-APTES-H_2L^{DAR}$.

[h] Reference test in the presence of $Fe_3O_4@SiO_2$ -APTES.

[i] Reference test in the presence of FeCl₃.

¹H NMR spectra for all synthesized compounds

C-H bond oxidation

1. Acetophenone

¹H NMR (250 MHz, CDCl₃): δ (ppm) = 7.96-7.94 (m, 2H), 7.56-7.43 (m, 3H), 2.5 (s, 3H).

2. Benzoic acid

¹H NMR (250 MHz, CDCl₃): δ (ppm) = 8.1 (d, *J*= 8 Hz, 2H), 7.62 (t, *J*= 8 Hz, 1H), 7.48 (t, *J*= 8 Hz, 2H).

3. 4-Bromobenzaldehyde

¹H NMR (250 MHz, CDCl₃): δ (ppm) = 9.98 (s, 1H), 7.73-7.64 (m, 4H).

4. 4-Nitrobenzaldehyde

 1 H NMR (250 MHz, CDCl₃): δ (ppm) = 10.16 (s, 1H), 8.41-8.38 (d, d, J= 8 Hz, 2H), 8.10-8.06 (d, J= 8 Hz, 2H).

5. 4-Chlorobenzoic acid

¹H NMR (250 MHz, d₆-DMSO): δ (ppm) = 7.91 (d, J= 8 Hz, 2H), 7.57 (d, J= 8 Hz, 2H).

6. 4-Methylbenzoic acid

¹H NMR (250 MHz, CDCl₃): δ (ppm) = 7.99 (d, *J*= 8 Hz, 2H), 7.629 (d, *J*= 8 Hz, 2H), 2.43 (s, 3H).

7. 3-Methylbenzoica acid

¹H NMR (250 MHz, CDCl₃): δ (ppm) = 7.93 (d, *J*= 8 Hz, 2H), 7.39 (m, 2H), 2.43 (s, 3H).

8. 2-Methylbenzoic acid

¹H NMR (250 MHz, CDCl₃): δ (ppm) = 8 (d, J= 8 Hz, 1H), 7.39-7.22 (m, 3H), 2.59 (s, 3H).

9. Benzophenone

¹H NMR (250 MHz, CDCl₃): δ (ppm) = 7.80 (m, 2H), 7.60-7.49 (m, 3H).

10. 1-Tetralone

¹H NMR (250 MHz, CDCl₃): δ (ppm) = 7.99 (d, *J*= 8 Hz, 1H), 7.42 (m, 1H), 7.31 (m, 2H), 2.94 (m, 2H), 2.61 (m, 2H), 2.11 (m, 2H).

11. Cyclohexanol

¹H NMR (250 MHz, CDCl₃): δ (ppm) = 3.55 (m, 1H), 2.22 (s, 1H), 1.18-1.55 (m, 10H).

C=C bond oxidation

1. 1-Pentanoic acid

 ^1H NMR (250 MHz, CDCl_3): δ (ppm) = 2.64 (m, 2H), 1.57 (m, 2H), 1.26 (m, 2H), 0.88 (m, 3H).

2. Adipic acid

¹H NMR (250 MHz, CDCl₃): δ (ppm) = 2.17 (m, 4H), 1.48 (m, 4H).

3. 6-Oxoheptanoic acid

¹H NMR (250 MHz, CDCl₃): δ (ppm) = 2.63 (m, 4H), 2.13 (s, 3H), 1.64 (m, 4H).

4. Heptanoic acid

 ^1H NMR (250 MHz, CDCl_3): δ (ppm) = 2.57 (m, 2H), 1.55 (m, 2H), 1.26 (m, 6H), 0.88 (m, 3H).

5. Octanedioic acid

 ^1H NMR (250 MHz, CDCl_3): δ (ppm) = 2.55 (m, 4H), 1.49 (m, 4H), 1.26 (m, 4H).

6. 3-Methylbutanoic acid

¹H NMR (250 MHz, CDCl₃): δ (ppm) = 2.31 (m, 3H), 0.81 (m, 6H).

7. Adipic acid

¹H NMR (250 MHz, CDCl₃): δ (ppm) = 2.17 (m, 4H), 1.48 (m, 4H).

8. Benzoic acid

¹H NMR (250 MHz, CDCl₃): δ (ppm) = 8.1 (d, J= 8 Hz, 2H), 7.62 (t, J= 8 Hz, 1H), 7.48 (t, J= 8 Hz, 2H).

9. Cis-stilben oxide

¹H NMR (250 MHz, CDCl₃): δ (ppm) = 7.45 (m, 10H), 3.94 (s, 2H).

Benzoxazoles NMR

1. 5,7-Di-tert-butyl-2-(4-bromophenyl)benzo[d]oxazole

Refined by column chromatography on silica gel and laundered with ethyl acetate/n-hexane (1:100). Isolated yield: 327 mg, 97%. Pale yellow liquid; ¹H NMR (250 MHz, CDCl₃): δ (ppm) = 1.39 (s, 9H), 1.54 (s, 9H), 7.31 (d, *J* = 2.5 Hz, 1H), 7.64 (d, *J* = 7.5 Hz, 2H), 7.68 (d, *J* = 2.5 Hz, 1H), 8.09 (d, *J* = 7.5 Hz, 2H).

2. 5,7-Di-tert-butyl-2-(4-chlorophenyl)benzo[d]oxazole

Refined by column chromatography on silica gel and laundered with ethyl acetate/n-hexane (1:100). Isolated yield: 321 mg, 94%. Colorless liquid; ¹H NMR (250 MHz, CDCl₃): δ (ppm) = 1.41 (s, 9H), 1.49 (s, 9H), 7.31 (d, *J*= 2.5 Hz, 1H), 7.65 (d, *J*= 2.5 Hz, 1H), 7.52 (d, *J*= 7.5 Hz, 2H), 8.16 (d, *J*= 7.5 Hz, 2H).

3. 5,7-Di-tert-butyl-2-(2-chlorophenyl)benzo[d]oxazole

Refined by column chromatography on silica gel and laundered with ethyl acetate/n-hexane (1:100). Isolated yield: 321 mg, 92%. Colorless liquid; ¹H NMR (250 MHz, CDCl₃): δ (ppm) = 1.40 (s, 9H), 1.50 (s, 9H), 7.35 (d, *J*= 2.5 Hz, 1H), 7.44 (m, 2H), 7.56 (d, *J*= 7.5 Hz, 1H), 7.72 (d, *J*= 2.5 Hz, 1H), 8.16 (d, *J*= 7.5 Hz, 1H).

4. 5,7-Di-tert-butyl-2-(2,6-dichlorophenyl)benzo[d]oxazole

Refined by column chromatography on silica gel and laundered with ethyl acetate/n-hexane (1:100). Isolated yield: 330 mg, 90%. Colorless liquid; ¹H NMR (250 MHz, CDCl₃): δ (ppm) = 1.41 (s, 9H), 1.50 (s, 9H), 7.38-7.46 (m, 4H), 7.73 (d, *J*= 2.5 Hz, 1H).

5. 5,7-Di-tert-butyl-2-(4-nitrophenyl)benzo[d]oxazole

Refined by column chromatography on silica gel and laundered with ethyl acetate/n-hexane (1:100). Isolated yield: 287 mg, 88%. Pale yellow liquid; ¹H NMR (250 MHz, CDCl₃): δ (ppm) = 1.41 (s, 9H), 1.49 (s, 9H), 7.21 (d, *J*= 2.5 Hz, 1H), 7.23 (d, *J*= 2.5 Hz, 1H), 7.91 (d, *J*= 7.5 Hz, 2H), 8.31 (d, *J*= 7.5 Hz, 2H).

6. 5,7-Di-tert-butyl-2-(p-tolyl)benzo[d]oxazole

Refined by column chromatography on silica gel and laundered with ethyl acetate/n-hexane (1:100). Isolated yield: 293 mg, 80%. Pale yellow liquid; ¹H NMR (250 MHz, CDCl₃): δ (ppm) = 1.41 (s, 9H), 1.49 (s, 9H), 2.45 (s, 3H), 7.29 (d, *J*= 4 Hz, 1H), 7.32-7.35 (d, *J*= 8 Hz, 2H), 7.64 (d, *J*= 4 Hz, 1H), 8.12 (d, *J*= 8 Hz, 2H).

7. 5,7-Di-tert-butyl-2-(4-methoxyphenyl)benzo[d]oxazole

Refined by column chromatography on silica gel and laundered with ethyl acetate/n-hexane (1:100). Isolated yield: 154 mg, 78%. Colorless liquid; ¹H NMR (250 MHz, CDCl₃): δ (ppm) = 1.41 (s, 9H), 1.49 (s, 9H), 3.81 (s, 3H), 7.05 (d, *J*= 9 Hz, 2H), 7.17 (s, 1H), 7.21 (s, 1H), 7.63 (d, *J*= 9 Hz, 2H).

