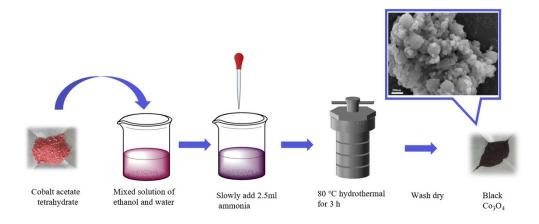
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Anchoring Co₃O₄ nanoparticles on conjugated polyimide ultrathin nanosheets: construction of a Z-scheme nano-heterostructure for Enhanced photocatalytic performance


Duoping Zhang ^a, Chenghai Ma ^{a,*}, Zhiang Luo ^a, Meitong Zhu ^a, Binhao Li ^a, Lian Zhou ^b, Guoyu Zhang ^b

^aSchool of Chemical Engineering, Qinghai University, Xining, 810016, China

^bNew Energy (Photovoltaic) Industry Research Center, Qinghai University, Xining 810016, China

* Corresponding author at: School of Chemical Engineering, Qinghai University, Xining, 810016, PR China. E-mail address:chmaqhu@126.com (C. Ma).

1

Scheme S1. preparation process of Co₃O₄ nanoparticles

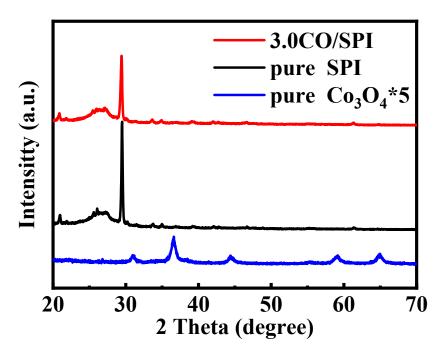
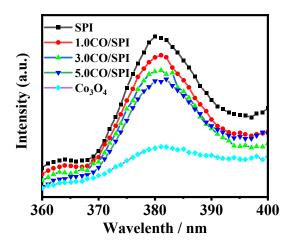



Fig. S1. XRD patterns of pure Co3O4, SPI, and 3.0COs/SPI powder samples.

Fig. S2. Element distribution of 3.0CO/SPI composite.

Figure S3. Comparison of photoluminescence (PL) spectra of pure SPI, pure Co₃O₄, and CO/SPI composites with different CO contents.

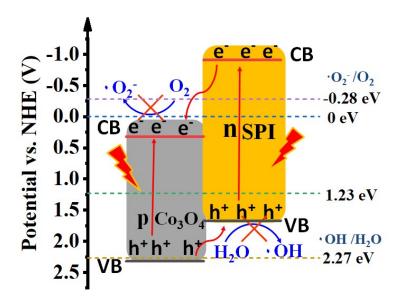


Fig. S4. Schematic illustration of the traditional type-II heterojunction charge transfer mechanism.