Supplementary Data

Synthesis and Characterization of a Lactose-Based Biosurfactant by a Novel Nanodendritic Catalyst and Evaluating its Efficacy as Emulsifier in a Food Emulsion System

Maryam Karami^{a,c}, Ali Reza Faraji^{b,c}*, Solmaz Saremnezhad^{a,c} and Mostafa Soltani^{a,c}

 ^aDepartment of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
 ^bDepartment of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
 ^cNutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
 *Corresponding author email address: alireza_ch57@yahoo.com, a.faraji@iaups.ac.ir

Tables

Table 1S. Chemical composition and physicochemical properties of the multifunctional nano-dendritic catalyst.

	Elemental Analysis (wt%) ^a		OFG ^b		Structural Parameters ^e			
Samples					LR			
	С	Ν	CHN	BT ^c	(%) ^d	\mathbf{S}_{BET}	V_{BJH}	MPD (mm)
						(m^{2}/g)	(cm^2/g)	
MBNP _s	-	-	-	-	-	71.0	0.17	8.53
L ₂ @MBNP	8.14	5.20	3.69	3.64	-	55.2	0.11	14.2
G _{0.5} L ₂ @MBNP	10.7	3.90	2.75	2.80	-	37.4	0.90	15.7
G _{1.0} L ₂ @MBNP	9.25	7.21	4.37	4.02	-	28.4	0.85	20.2
G _{1.5} L ₂ @MBNP	7.85	8.03	6.32	5.85	-	22.8	0.79	23.1
Met-G _{2.0} L ₂ @MBNP	6.10	9.23	6.58	6.25	-	18.4	0.72	26.5
Mn ^{II} -G _{2.0} L ₂ @MBNP	5.34	6.35	-	-	54	16.5	0.64	27.4
Co ^{II} -G _{2.0} L ₂ @MBNP	5.09	6.12	-	-	57	16.3	0.63	27.6

^aCarbon and Nitrogen was estimated from the elemental analyses.

^bOrganic functional group determined from the N-contents.

^c Back titration.

^d Loading rate of metal ions.

^e Pore size calculated using BJH method.

Entry	Catalyst ^a	Lac	Lac:LauA	Solvent	T(°C)	Conversion ^b	Yield
						(%)	(%)
1	-	PLac	1:2	ACN	50	trace	trace
1	Co-G _{2.0} L ₂ @SCMB	PLac	1:1	ACN	50	29.5	21
2	Co-G _{2.0} L ₂ @SCMB	PLac	1:1	ACN	60	48.3	38
3	Co-G _{2.0} L ₂ @SCMB	PLac	1:2	ACN	40	66.7	55
4	Co-G _{2.0} L ₂ @SCMB	PLac	1:2	ACN	50	92.5	87
5	Co-G _{2.0} L ₂ @SCMB	PLac	1:2	ACN	55	93	87
6	Co-G _{2.0} L ₂ @SCMB	PLac	1:1	ASTN	50	41.9	38
7	Co-G _{2.0} L ₂ @SCMB	PLac	1:2	ASTN	50	84.1	74
8	Co-G _{2.0} L ₂ @SCMB	RLac	1:2	ACN	50	32.14	-
9	Co-G _{2.0} L ₂ @SCMB	RLac	1:2	ACN	55	39.3	-
10	Co-G _{2.0} L ₂ @SCMB	RLac	1:2	ASTN	50	17.3	-
11	Mn-G _{2.0} L ₂ @SCMB	PLac	1:1	ACN	50	43	31
12	Mn-G _{2.0} L ₂ @SCMB	PLac	1:2	ACN	50	89.4	83
13	Mn-G _{2.0} L ₂ @SCMB	PLac	1:1	ASTN	50	37.3	33
14	Mn-G _{2.0} L ₂ @SCMB	PLac	1:2	ASTN	50	82.3	72
15	Mn-G _{2.0} L ₂ @SCMB	PLac	1:2	ACN	55	89.4	83
16	Mn-G _{2.0} L ₂ @SCMB	RLac	1:1	ACN	60	47.6	36
17	Mn-G _{2.0} L ₂ @SCMB	RLac	1:2	ACN	50	29.3	-
18	Mn-G _{2.0} L ₂ @SCMB	RLac	1:2	ACN	60	35.2	-
19	Mn-G _{2.0} L ₂ @SCMB	RLac	1:1	ASTN	50	13.2	-

Table 2S. Reaction condition applied for synthesis of biosurfactant.

^a Reaction condition: $[Co^{II}-Cat] = 30.0 \text{ mg}$, [Solvent] = 6 mL, [MS] = 600 mg, t=6 h, T=50 °C; $[Mn^{II}-Cat] = 40.0 \text{ mg}$, [Solvent] = 6 mL, [MS] = 600 mg, t=8 day, T=50 °C; ^b Conversion measured by Conv., $\% = (\sum S, \% \text{ LauA})/(\sum S, \% \text{Substrate} + \sum \% S, \% \text{ Biosurfactant}) \times 100 \%$.

Figures

Fig. 1S. Surface tension versos concentration plot of biosurfactant by (A) Co^{II}- $G_{2.0}L_2@SCMB$; (B) Mn^{II}- $G_{2.0}L_2@SCMB$.

Fig.2S. Construction of foam in the presence of LML (aq) with concentration (g/L) (A) 0.6, (B) 0.4 & (C) 0.2.

Fig.3S (A) Reusability of Co^{II} - $G_{2.0}L_2@SCMB$ in synthesis of biosurfactant; (B) Reusability of Mn^{II}- $G_{2.0}L_2@SCMB$ in synthesis of biosurfactant.