Electronic supplementary information

Synthesis of Chiral-at-Metal Rhodium Complexes from Achiral Tripodal Tetradentate Ligands: Resolution and Application to Enantioselective Diels-Alder and 1,3-Dipolar Cycloadditions

Alvaro G. Tejero,^a María Carmona,^a Ricardo Rodríguez,^{a,*} Fernando Viguri,^{a,*} Fernando J. Lahoz,^a Pilar García-Orduña,^a and Daniel Carmona^{a,*}

 a Departamento de Catálisis y Procesos Catalíticos. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza. Pedro Cerbuna 12, 50009 Zaragoza, Spain

E-mail: dcarmona@unizar.es; riromar@unizar.es; fviguri@unizar.es

Table of Contents

1. ${}^{1}H$, ${}^{31}P{}^{1}H$, ${}^{19}F{}^{1}H$ and ${}^{13}C{}^{1}H$ spectra for the complexes 2, 3 and

$(C_{\rm Rh}, R_{\rm N}, S_{\rm C})/(A_{\rm Rh}, S_{\rm N}, S_{\rm C})$ -4	S2
2. HPLC chromatograms	S9
3. Structural characterization of complex 2 (X-ray crystallography)	S11
4. References	S12

1. ¹H, ³¹P{¹H}, ¹⁹F{¹H} and ¹³C{¹H} spectra for the complexes 2, 3 and $(C_{Rh},R_N,S_C)/(A_{Rh},S_N,S_C)-4$

Figure S1. ¹H NMR (CD₂Cl₂/acetone-d₆, RT) spectrum of 2

Figure S2. ³¹P{¹H} (CD₂Cl₂/acetone-d₆, RT) spectrum of 2

Figure S3. ¹⁹F{¹H} (CD₂Cl₂/acetone-d₆, RT) spectrum of 2

Figure S4. ¹³C{¹H} (CD₂Cl₂/acetone-d₆, RT) spectrum of 2

Figure S5. ¹H NMR (CD₂Cl₂, RT) spectrum of 3

Figure S6. ³¹P{¹H} (CD₂Cl₂, RT) spectrum of 3

Figure S7. ¹⁹F{¹H} (CD₂Cl₂, RT) spectrum of 3

Figure S8. ¹³C{¹H} (CD₂Cl₂, RT) spectrum of 3

Figure S9. ¹H NMR (CD₂Cl₂, RT) spectrum of $(C_{Rh}, R_N, S_C)/(A_{Rh}, S_N, S_C)$ -4

Figure S10. ³¹P{¹H} (CD₂Cl₂, RT) spectrum of $(C_{Rh}, R_N, S_C)/(A_{Rh}, S_N, S_C)$ -4

Figure S11. ¹⁹F{¹H} (CD₂Cl₂, RT) spectrum of $(C_{Rh}, R_N, S_C)/(A_{Rh}, S_N, S_C)$ -4

Figure S12. ¹³C{¹H} (CD₂Cl₂, RT) spectrum of (*C*_{Rh},*R*_N,*S*_C)/(*A*_{Rh},*S*_N,*S*_C)-4

Figure S13. NOESY ¹H-¹H (CD₂Cl₂, RT) and HMBC ³¹P-¹H (CD₂Cl₂, RT) experiments of $(C_{Rh}, R_N, S_C)/(A_{Rh}, S_N, S_C)$ -4

2. HPLC chromatograms

Figure S15. HPLC chromatogram for (A_{Rh}, R_N) -2

Figure S16. HPLC chromatogram for (A_{Rh}, R_N) -2 after heating 48 h at 80 °C in MeOH

Figure S17. HPLC chromatogram for (C_{Rh},S_N)-2

3. Structural characterization of the complex **2** (X-ray crystallography)

X-ray diffraction data were collected on APEX DUO Bruker diffractometer, using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Selected crystal was mounted on a fiber, coated with a protecting perfluoropolyether oil and cooled to 100(2) K with an open-flow nitrogen gas. Data were collected using ω -scans with narrow oscillation frame strategy ($\Delta \omega = 0.3^{\circ}$). Data were integrated and corrected from absorption effects with SAINT^{S1} and SADABS^{S2} programs, included in APEX2 package. Crystal structures were solved by direct methods with SHELXS-2013^{S3} and refined by full-matrix least squares on F^2 with SHELXL program^{S4} included in Wingx program system.^{S5} Hydrogen atoms have been included in the model in calculated positions and refined with a riding model.

Crystal data for complex 2: $C_{37}H_{33}F_{15}N_4PRhSb_2 \cdot 2(CH_2Cl_2)$; $M_r = 1365.90$; colourless prism, $0.070 \times 0.115 \times 0.200 \text{ mm}^3$; triclinic P^{-1} ; a = 12.2805(9) Å, b = 13.6365(9) Å, c = 14.6021(10) Å, a = 96.0690(10) °, $\beta = 102.032(2)$ °, $\gamma = 92.269(2)$ °; V = 2373.4(3) Å³, Z = 2, $D_c = 1.911$ g/cm³; $\mu = 1.826$ cm⁻¹; min. and max. absorption correction factors: 0.7569 and 0.8373; $2\theta_{\text{max}} = 58.374^{\circ}$; 32424 reflections measured, 12574 unique; $R_{\text{int}} = 0.0436$; number of data/restraint/parameters 12574/0/597; $R_1 = 0.0485$ [9063 reflections, $I > 2\sigma(I)$], w $R(F^2) = 0.1180$ (all data); largest difference peak 2.977 e·Å⁻³.

4. References

- S1 SAINT+, version 6.01: Area-Detector Integration Software, Bruker AXS, Madison, WI, 2001.
- S2 SADABS, Area Detector Absorption Program. Bruker AXS, Madison, WI, 1996; L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, *J. Appl. Cryst.* 2015, **48**, 3-10.
- S3 G. M. Sheldrick. A short history of SHELX. Acta Crystallogr. 2008, A64, 112-122.
- S4 G. M. Sheldrick. Crystal structure refinement with SHELXL. *Acta Crystallogr*. 2015, C71, 3-8.
- S5 L. J. Farrugia. WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 2012, 45, 849-854.