

Supporting Information

Fig S1 (a) - (f) SEM of the STFN samples at different calcination temperatures

Fig S2 TGA of $S_{1\text{-}x}\text{TFN}$ with an A-site vacancy

calcination temperatures						
Catalysts	Surface area (m^2/g)	Pore volume (cm^3/g)	Pore width (nm)			
STFN-700	32.839	0.104	3.828			
STFN-800	33.933	0.050	3.939			
STFN-900	25.549	0.047	3.806			
STFN-1000	17.106	0.021	3.677			
STFN-1100	8.404	0.012	3.539			
STFN-1200	6.001	0.007	3.420			

Table S1 Comparison of pore size and specific surface area of STFN at different

 Table S2 ORR performance of sample STFN at different calcination temperatures

Catalysts	E _{onset} (V vs. RHE)	E _{1/2} (V vs. RHE)	J (mA cm ⁻²)	Tafel (mV dec ⁻¹)
STFN-700	0.8843	0.6151	-5.8040	106
STFN-800	0.8857	0.6411	-6.1971	103
STFN-900	0.8821	0.5961	-5.5891	123
STFN-1000	0.8812	0.5678	-5.3766	126
STFN-1100	0.8793	0.5318	-5.1958	129
STFN-1200	0.8762	0.5221	-4.0324	140

Table S3 OER performance and ΔE of STFN calcined at different temperature	es
--	----

		OER		ORR	
Catalysts	Tafel (mV dec ⁻ 1)	$\eta \\ (mV)$	@10 mA cm ⁻² (V)	@-3 mA cm ⁻² (V)	ΔE (V)
STFN-700	127	450.6	1.6806	0.6001	1.0805
STFN-800	103	412.0	1.6420	0.6124	1.0296
STFN-900	136	463.3	1.6933	0.5972	1.0961
STFN-1000	153	526.3	1.7563	0.5815	1.1748
STFN-1100	159	553.3	1.7833	0.5279	1.2554

STFN-1200	211	568.3	1.7983	0.5128	1.2855

Catalysts	Surface area	Pore volume	Pore width
	(m^2/g)	$(\mathrm{cm}^{3}/\mathrm{g})$	(nm)
STFN1	32.839	0.104	3.828
STFN2	34.957	0.112	3.941
STFN3	36.828	0.153	4.154

Table S4 A-site-deficient STFN pore size and specific surface area data comparison

Catalyst	H_2O	-OH/O ₂	O ₂ ²⁻ /O ⁻	\mathbf{O}_{latt}
	(%)	(%)	(%)	(%)
STFN1	11.28	32.34	35.37	21.01
STFN3	1.49	41.96	42.91	13.64

 Table S5 Oxygen species content of STFN1 and STFN3

Table S6 Fe and Ni contents in STFN1 and STFN3

Catalyst	Fe ⁴⁺	Fe ³⁺	Ni ³⁺	Ni ²⁺
	(%)	(%)	(%)	(%)
STFN1	30.37	69.63	60.96	39.04
STFN3	40.08	59.92	64.42	35.58

 Table S7
 ORR performance of A-site-deficient STFN samples

Catalysts	E_{onset} (V)	$\begin{array}{c} E_{1/2} \\ (V) \end{array}$	$\frac{J}{(mA cm^{-2})}$	Tafel (mV dec ⁻¹)
STFN1	0.8857	0.6411	-6.1971	103
STFN2	0.8912	0.6679	-6.5671	98
STFN3	0.8934	0.6740	-6.9762	97

	1				1
		OER		ORR	
Catalyzata	Tafel		@10	@-3 mA cm ⁻	ΔE
Catalysis	(mV dec-	e^{-1}		2	(\mathbf{V})
	1)	$(\mathbf{m}\mathbf{v})$	(\mathbf{v})	(\mathbf{V})	
STFN1	103	412.0	1.6420	0.6124	1.0296
STFN2	100	408	1.6380	0.6345	1.0335
STFN3	99	399.9	1.6299	0.7082	0.9217

Table S8 OER performance and ΔE of A-site-deficient STFN samples

Table S9 A comparison of ORR and OER activity for STFN3 and other reportedperovskite catalysts. All the electrochemical measurements were carried out in 0.1 MKOH solution

	ORR			OER		
Cotolyst	E _{1/2}	Tafel	Tafel	η (mV)	ΔΕ	Dof
Cataryst	(V vs. RHE)	(mV dec ⁻¹)	(mV dec ⁻¹)	@10 mA cm ⁻²	(V)	Kel.
$(La_{0.8}Sr_{0.2})_{0.95}Mn_{0.5}Fe_{0.5}$	0.124	122	220			[1]
$O_{3-\delta}$	-0.124	132	230	-	-	
$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3\text{-}\delta}$	-	-	-	380	-	[2]
$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3\text{-}\delta}$	-	-	94	510	-	[3]
$La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_{3\text{-}\delta}$	0.888	90	113	506	1.032	[4]
$La_{0.8}Sr_{0.2}Co_{0.6}Mn_{0.4}O_{3\text{-}\delta}$	0.881	104	113	515	1.104	[4]
$Sr_{0.95}Nb_{0.1}Co_{0.7}Fe_{0.2}O_{3\text{-}\delta}$	-	-	70	420	-	[5]
$La_{0.7}Sr_{0.15}Pd_{0.15}MnO_{3\text{-}\delta}$	0.973	87	-	-	-	[6]
$La_{0.9}Y_{0.1}MnO_{3\text{-}\delta}$	0.909	101	-	-	-	[7]
$La_{1.7}Sr_{0.3}Co_{0.5}Ni_{0.5}O_{4+\delta}$	0.696	-	125	592	1.126	[8]
$La_{0.4}Sr_{0.6}Co_{0.7}Fe_{0.2}Nb_{0.1}$	0 505	114	78	360	1.07	[9]
О _{3-б}	0.000	111	10	200	1.07	
$BaZr_{0.15}Fe_{0.85}O_{3-\delta}$	-	-	97	471	-	[10]
IrOa	_	_	115	413	_	This
102			115	415		work
Pt/C	0 7054	00	_	_	_	This
TUC.	0.7034		-	-	-	work
SroaTiozEes Nis Oc-	0 7082	97	90	300 0	0.921	This
510.9110.31 00.61 10.103-8	0.7002	<i>)</i>	<u>,</u> ,	577.7	7	work

References

[1] R-H Yuan, Y He, W He, et al. Bifunctional electrocatalytic activity of La_{0.8}Sr_{0.2}MnO₃based perovskite with the A-site deficiency for oxygen reduction and evolution reactions in alkaline media[J]. Applied Energy, 2019, 251:113406.

[2] G Li, S Hou, L Gui, et al. Carbon quantum dots decorated $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ perovskite nanofibers for boosting oxygen evolution reaction[J]. Applied Catalysis B: Environmental, 2019, 257:117919.

[3] Y Bu, O Gwon, G Nam, et al. A Highly Efficient and Robust Cation Ordered Perovskite Oxide as a Bifunctional Catalyst for Rechargeable Zinc-Air Batteries[J]. ACS Nano, 2017, 11(11): 11594-11601.

[4] Q Wang, Y Xue, S Sun, et al. La_{0.8}Sr_{0.2}Co_{1-x}MnxO₃ perovskites as efficient bi-functional cathode catalysts for rechargeable zinc-air batteries[J]. Electrochimica Acta, 2017, 254: 14-24.

[5] H Liu, X Ding, L Wang, et al. Cation deficiency design: A simple and efficient strategy for promoting oxygen evolution reaction activity of perovskite electrocatalyst[J]. Electrochimica Acta, 2018, 259: 1004-1010.

[6] Y Xue, S Sun, Q Wang, et al. $La_{0.7}(Sr_{0.3-x}Pd_x)MnO_3$ as a highly efficient electrocatalyst for oxygen reduction reaction in aluminum air battery[J]. Electrochimica Acta, 2017, 230: 418-427.

[7] H Miao, Z Wang, Q Wang, et al. A new family of Mn-based perovskite $(La_{1-x}Y_xMnO_3)$ with improved oxygen electrocatalytic activity for metal-air batteries[J]. Energy, 2018, 154: 561-570.

[8] P Li, B Wei, Z Lü, et al. La_{1.7}Sr_{0.3}Co_{0.5}Ni_{0.5}O_{4+δ} layered perovskite as an efficient bifunctional electrocatalyst for rechargeable zinc-air batteries[J]. Applied Surface Science, 2019, 464: 494-501.

[9] L Yu, N Xu, T Zhu, et al. La_{0.4}Sr_{0.6}Co_{0.7}Fe_{0.2}Nb_{0.1}O_{3-δ} perovskite prepared by the sol-gel method with superior performance as a bifunctional oxygen electrocatalyst[J]. International Journal of Hydrogen Energy, 2020, 45(55): 30583-30591.

[10] K Zhu, H Liu, X Li, et al. Oxygen evolution reaction over Fe site of $BaZr_xFe_{1-x}O_{3-\delta}$ perovskite oxides, Electrochim. Acta, 241 (2017) 433-439.