Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Facile synthesis of high-efficient In₂S₃ photocatalysts for the removal

of dye with size-dependent photocatalysis

Chaofan Zheng ^{a,†}, Ziyao Wang ^{a,†}, Jialong Yuan ^a, Qingfeng Xu ^a, Haixin Li ^a, Xiaoyi Lu ^a, Jiangang

Gao a,b,* and Wenjin Yue a,b,*

^a School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P.

R. China

^b Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural

Resources, Wuhu, 241000, P. R. China

*Corresponding author.

Email address: gaojiangang@ahpu.edu.cn (Jiangang Gao)

yuewenjin 79@163.com (Wenjin Yue)

[†] These authors contributed equally to this work.

S1. Photocatalysis experiments

In₂S₃-5, In₂S₃-10 and In₂S₃-15 were suspended in rhodamine B (RhB) solution to obtain the

suspension with the concentration of 60 mg/L, respectively. Then the suspension was kept in the dark

for 30 min to reach the adsorbed equilibrium before the photoreaction. Artificial solar light used 300 W

Xenon lamp (PLS-SXE 300, Beijing Trusttech Co. Ltd., China) loaded with Cut 420 filter which

emitted visible light in 400-780 nm. The distance between Xenon lamp and the suspension was 10 cm

away, getting the intensity approximately constant at 220 mW/cm². 3 mL suspension was taken out and

centrifuged to remove In₂S₃ particles at intervals, the filtrates were tested by UV-vis absorption

spectrum to record the variation of the maximum absorption band of RhB at λ =554 nm. Moreover, the

photodegradation of crystal violet (CV), malachite green (MG), methyl orange (MO), congo red (CR)

and acid red (AR) with In_2S_3 -10 were carried out as the similar procedure, except that the maximum

absorption band of CV at λ =590 nm, MG at λ =617 nm, MO at λ =465 nm, CR at λ =498 nm and AR at λ =511 nm.

S2. Electrochemical measurements

In electrochemical experiments, Pt wire and saturated calomel electrode (SCE) electrode were used as the counter electrode and reference electrode, respectively. Cyclic voltammetry (C-V) measurement was carried out in N_2 atmosphere at a scan rate of 50 mV/s with tetrabutylammonium perchlorate dissolved in acetonitrile (0.1 M) as the supporting electrolyte. 4 mg In_2S_3 was dispersed in the mixed solvent containing 1.5 mL deionized water and 0.5 mL ethanol to carry out ultrasound treatment for 60 min followed by the addition of 60 μ L Nafion glue. Dry *ca.* 15-20 μ L mixture on carbon substrate to make the working electrode for C-V measurement. In linear sweep voltammetry (LSV), transient photocurrent-time (I-t) curves and electrochemical impedance spectroscopy (EIS) measurements, the working electrodes were prepared as follows. 5 mg In_2S_3 which dispersed in the mixed solvent containing 0.5 mL water and 0.5 mL alcohol had a ultrasound treatment for 120 min, followed by 20 mL Nafion glue adding into the mixture, then *ca.* 300-400 μ L mixture was dried on ITO conductive glass. 0.5 M In_2SO_4 aqueous solution was used as the electrolyte. 300 W Xe lamp with an optical cut-off filter ($\lambda \ge 420$ nm) was used as the light source. EIS measurement was carried out at open circuit potential in $In_2S_1O_2$ Hz frequency range.

S3. Calculation of band edge potential based on empirical equation and C-V measurement

Based on the value of E_{g-O} , the valence band edge potential (E_{VB}) of a semiconductor at the point of zero charge can be calculated by the following empirical equation: $E_{VB} = X - E^e + 0.5E_{g-O}$, where X is the electronegativity of the semiconductor (the value for In_2S_3 is 4.7 eV), E^e is the energy of free electrons on the hydrogen scale (~4.5 eV). Furthermore, the conduction band edge potential (E_{CB}) can be determined by $E_{CB} = E_{VB} - E_{g-O}$. The calculated results of different In_2S_3 are shown as Table 1 in main body.

C-V measurements are also helpful for determination of the ionization potential (*IP*) and the electron affinity (*EA*) of nanoparticles that are equal to E_{VB} and E_{CB} . With SCE reference electrode, it is expected that the nanoparticles have $IP = -(E_{ox} + 0.245)$ eV and $EA = -(E_{red} + 0.245)$ eV, where E_{ox} and E_{red} are the onset potentials of oxidation and reduction peaks. The value of 0.245 was the potential

of SCE electrode versus the normal hydrogen electrode (NHE). The results of different In_2S_3 are shown as Table 1 in main body.