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1. General Information
1H NMR spectra was recorded on a Bruker Ascend 500 M NMR spectrometer; 

CDCl3 was used as a solvent, while tetramethylsilane (TMS) was used as an internal 

standard. The chemical shifts are reported in the ppm down field (δ) from TMS, and 

the coupling constants J are expressed in Hz. The peak patterns are labeled as follows: 

s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Thin-layer chromatography 

(TLC) was carried out on SiO2 (silica gel 60F254, Merck), and the spots were located 

with UV light, iodoplatinate reagent, or 1% aqueous KMnO4. Flash chromatography 

was carried out on SiO2 (silica gel 60, 200–300 mesh). 

2. Preparation of AuNPore Catalyst

Figure S1. Schematic illustration of the fabrication process of nanoporous gold catalyst.

3. Characterization of Catalyst 
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Figure S2. XPS spectra of Au 4f of fresh AuNPore.

Figure S3. SEM images of (a) fresh AuNPore and (b) AuNPore after six run

4. Representative Procedure for the AuNPore-Catalyzed One-Pot, 
Two-Step Synthesis of Secondary Amines

AuNPore (4.92 mg, 5 mol %), phenylacetylene (1a, 51.07 mg, 0.5 mmol), and 

phenylamine (2a, 55.55 mg, 0.6 mmol) were placed in a V-shaped vial reactor with a 

magnetic stir bar under N2 atmosphere. The reaction mixture was stirred at 50 ºC for 

24 h and cooled down to room temperature. Then, PhMe2SiH (102.20 mg, 0.75 mmol) 

and H2O (18 mg, 1.0 mmol) were added directly to reaction mixture and stirring was 

continued at room temperature for 5 h. The AuNPore was recovered by filtration, 

followed by washing with acetone, and the residual was purified via silica gel 

chromatography (eluent: petroleum ether/ethyl acetate = 5/1) to afford secondary 
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amines (4a) as a colorless oil.

5. Characterization Data of Products

N,1-Diphenylethan-1-imine (3a)

N

Yellow oil (91.8 mg, 94% yield). 1H NMR (500 MHz, CDCl3): δ 8.02 (dd, J = 7.7, 2.0 

Hz, 2H), 7.54–7.47 (m, 3H), 7.40 (t, J = 7.8 Hz, 2H), 7.13 (t, J = 7.4 Hz, 1H), 6.89–

6.81 (m, 2H), 2.28 (s, 3H). NMR data are in agreement with those from the literature.1

N-Phenyl-1-(p-tolyl)ethan-1-imine (3b) 

N

Yellow oil (84.8 mg, 81% yield). 1H NMR (500 MHz, CDCl3): δ 7.87 (d, J = 8.2 Hz, 

2H), 7.34 (t, J = 7.8 Hz, 2H), 7.25 (d, J = 8.2 Hz, 2H), 7.08 (t, J = 7.4 Hz, 1H), 6.82–

6.77 (m, 2H), 2.41 (s, 3H), 2.21 (s, 3H). NMR data are in agreement with those from 

the literature.1

N-Phenyl-1-(m-tolyl)ethan-1-imine (3c)

N

Yellow oil (87.9 mg, 84% yield). 1H NMR (500 MHz, CDCl3): δ 7.82 (s, 1H), 7.72 (d, 

J = 8.0 Hz, 1H), 7.38–7.31 (m, 3H), 7.28 (d, J = 7.6 Hz, 1H), 7.12–7.05 (m, 1H), 

6.83–6.76 (m, 2H), 2.42 (s, 3H), 2.22 (s, 3H). NMR data are in agreement with those 

from the literature.1



S5

N-Phenyl-1-(o-tolyl)ethan-1-imine (3d)

N

Yellow oil (85.8 mg, 82% yield, E/Z = 2:1). 1H NMR (500 MHz, CDCl3): δ 7.45–7.37 

(m, 2H), 7.34-7.26 (m, 2H), 7.20–7.09 (m, 2H), 7.07–7.02 (m, 1H), 6.91–6.86 (m, 

1.5H), 6.72–6.68 (m, 0.5H), 2.54 (s, 3H, major), 2.50 (s, 3H, minor), 2.19 (s, 3H, 

major), 2.14 (s, 3H, minor). NMR data are in agreement with those from the 

literature.2

1-(4-Methoxyphenyl)-N-phenylethan-1-imine (3e)

O

N

Yellow solid (90.1 mg, 80% yield). 1H NMR (500 MHz, CDCl3): δ 7.94 (d, J = 9.0 

Hz, 2H), 7.36–7.32 (m, 2H), 7.09–7.05 (m, 1H), 6.96–6.93 (m, 2H), 6.79–6.77 (m, 

2H), 3.87 (s, 3H), 2.20 (s, 3H). NMR data are in agreement with those from the 

literature.1

N,N-Dimethyl-4-(1-(phenylimino)ethyl)aniline (3f)

N

N

Brown solid (89.4 mg, 75% yield). 1H NMR (500 MHz, CDCl3): δ 7.89 (d, J = 9.0 Hz, 

2H), 7.32 (t, J = 8.0 Hz, 2H), 7.04 (t, J = 7.5 Hz, 1H), 6.79 (d, J = 7.0 Hz, 2H), 6.71 

(d, J = 8.5 Hz, 2H), 3.02 (s, 6H), 2.17 (s, 3H). NMR data are in agreement with those 

from the literature.1

1-(4-Fluorophenyl)-N-phenylethan-1-imine (3g)
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F

N

Yellow solid (93.8 mg, 88% yield). 1H NMR (500 MHz, CDCl3): δ 8.01–7.95 (m, 2H), 

7.35 (t, J = 7.9 Hz, 2H), 7.14–7.07 (m, 3H), 6.79 (d, J = 7.0 Hz, 2H), 2.22 (s, 3H). 

NMR data are in agreement with those from the literature.1

1-(4-Chlorophenyl)-N-phenylethan-1-imine (3h)

Cl

N

Yellow solid (97.6 mg, 85% yield). 1H NMR (500 MHz, CDCl3): δ 7.92 (d, J = 8.5 

Hz, 2H), 7.42 (d, J = 8.5 Hz, 2H), 7.36 (t, J = 7.5 Hz, 2H), 7.10 (t, J = 7.5 Hz, 1H), 

6.79 (d, J = 7.5 Hz, 2H), 2.22 (s, 3H). NMR data are in agreement with those from the 

literature.3

1-(4-Bromophenyl)-N-phenylethan-1-imine (3i)

Br

N

Yellow oil (115.1 mg, 84% yield). 1H NMR (500 MHz, CDCl3): δ 7.85 (d, J = 8.6 Hz, 

2H), 7.58 (d, J = 8.6 Hz, 2H), 7.35 (t, J = 7.8 Hz, 2H), 7.10 (t, J = 7.4 Hz, 1H), 6.78 

(d, J = 7.0 Hz, 2H), 2.21 (s, 3H). NMR data are in agreement with those from the 

literature.1

N-Phenyl-1-(4-(trifluoromethyl)phenyl)ethan-1-imine (3j)

F3C

N
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Yellow oil (118.5 mg, 90% yield). 1H NMR (500 MHz, CDCl3): δ 8.09 (d, J = 8.1 Hz, 

2H), 7.71 (d, J = 8.2 Hz, 2H), 7.37 (t, J = 7.9 Hz, 2H), 7.12 (t, J = 7.4 Hz, 1H), 6.84–

6.76 (m, 2H), 2.27 (s, 3H). NMR data are in agreement with those from the literature.1

1-(Naphthalen-2-yl)-N-phenylethan-1-imine (3k)

N

Yellow solid (104.3 mg, 85% yield). 1H NMR (500 MHz, CDCl3): δ 8.35 (d, J = 1.8 

Hz, 1H), 8.22 (dd, J = 8.6, 1.8 Hz, 1H), 7.99–7.83 (m, 3H), 7.60–7.48 (m, 2H), 7.43–

7.32 (m, 2H), 7.17–7.04 (m, 1H), 6.90–6.75 (m, 2H), 2.36 (s, 3H). NMR data are in 

agreement with those from the literature.3

1-Phenyl-N-(p-tolyl)ethan-1-imine (3l)

N

Yellow oil (97.3 mg, 93% yield). 1H NMR (500 MHz, CDCl3): δ 7.98–7.95 (m, 2H), 

7.46–7.43 (m, 3H), 7.16 (d, J = 8.0 Hz, 2H), 6.72–6.69 (m, 2H), 2.35 (s, 3H), 2.24 (s, 

3H). NMR data are in agreement with those from the literature.1

1-Phenyl-N-(m-tolyl)ethan-1-imine (3m)

N

Yellow oil (95.2 mg, 91% yield). 1H NMR (500 MHz, CDCl3): δ 7.99–7.93 (m, 2H), 

7.48–7.42 (m, 3H), 7.24 (dd, J = 14.1, 6.4 Hz, 1H), 6.90 (d, J = 7.6 Hz, 1H), 6.65–

6.57 (m, 2H), 2.36 (s, 3H), 2.24 (s, 3H). NMR data are in agreement with those from 

the literature.4

1-Phenyl-N-(o-tolyl)ethan-1-imine (3n)
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N

Yellow solid (94.2 mg, 90% yield). 1H NMR (500 MHz, CDCl3): δ 8.04–7.88 (m, 2H), 

7.46 (d, J = 7.2 Hz, 3H), 7.26 (t, J = 4.0 Hz, 1H), 6.65 (dd, J = 8.2, 2.5 Hz, 1H), 6.44–

6.31 (m, 2H), 3.82 (s, 3H), 2.25 (s, 3H). NMR data are in agreement with those from 

the literature.3

N-(4-Methoxyphenyl)-1-phenylethan-1-imine (3o)

N

O

Yellow solid (105.9 mg, 94% yield). 1H NMR (500 MHz, CDCl3): δ 8.00–7.93 (m, 

2H), 7.48–7.41 (m, 3H), 6.95–6.88 (m, 2H), 6.79–6.73 (m, 2H), 3.82 (s, 3H), 2.25 (s, 

3H). NMR data are in agreement with those from the literature.3

N-(3-Methoxyphenyl)-1-phenylethan-1-imine (3p)

N

O

Yellow oil (101.4 mg, 90% yield). 1H NMR (500 MHz, CDCl3): δ 8.01 (dd, J = 7.6, 

2.1 Hz, 2H), 7.50–7.43 (m, 3H), 7.23–7.15 (m, 2H), 7.05–6.90 (m, 1H), 6.65 (d, J = 

7.7 Hz, 1H), 2.17 (s, 3H), 2.10 (s, 3H). NMR data are in agreement with those from 

the literature.4

N-(4-Hydroxyphenyl)-1-phenylethan-1-imine (3q)
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N

OH

Yellow solid (94.0 mg, 89% yield). 1H NMR (500 MHz, CDCl3): δ 7.97–7.90 (m, 2H), 

7.46–7.42 (m, 3H), 6.84–6.78 (m, 2H), 6.72–6.67 (m, 2H), 2.62 (s, 1H), 2.25 (s, 3H). 

NMR data are in agreement with those from the literature.5

N-(4-Fluorophenyl)-1-phenylethan-1-imine (3r)

N

F

Yellow solid (87.4 mg, 82% yield). 1H NMR (500 MHz, CDCl3): δ 8.00–7.91 (m, 2H), 

7.52–7.40 (m, 3H), 7.05 (t, J = 8.7 Hz, 2H), 6.80–6.70 (m, 2H), 2.24 (s, 3H). NMR 

data are in agreement with those from the literature.1

N-(4-Chlorophenyl)-1-phenylethan-1-imine (3s)

N

Cl

Yellow solid (97.6 mg, 85% yield). 1H NMR (500 MHz, CDCl3): δ 7.98–7.94 (m, 2H), 

7.49–7.43 (m, 3H), 7.32 (d, J = 8.6 Hz, 2H), 6.76–6.71 (m, 2H), 2.23 (s, 3H). NMR 

data are in agreement with those from the literature.1

N-(4-Bromophenyl)-1-phenylethan-1-imine (3t)

N

Br

Yellow solid (111.0 mg, 81% yield). 1H NMR (500 MHz, CDCl3): δ 8.00–7.91 (m, 

2H), 7.50–7.42 (m, 5H), 6.72–6.65 (m, 2H), 2.23 (s, 3H). NMR data are in agreement 
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with those from the literature.6

N-(3-Acetylphenyl)-1-phenylethan-1-imine (3u)

N
O

Yellow solid (99.7 mg, 84% yield). 1H NMR (500 MHz, CDCl3): δ 8.02–7.93 (m, 2H), 

7.80–7.65 (m, 1H), 7.50–7.42 (m, 4H), 7.40 (t, J = 1.9 Hz, 1H), 7.05–6.98 (m, 1H), 

2.61 (s, 3H), 2.24 (s, 3H). NMR data are in agreement with those from the literature.7

N-[3-(Methoxycarbonyl)phenyl]-1-phenylethan-1-imine (3v)

N
O

O

Yellow solid (103.9 mg, 82% yield). 1H NMR (500 MHz, CDCl3): δ 8.01–7.93 (m, 

2H), 7.99–7.95 (m, 1H), 7.56–7.37 (m, 5H), 7.03–6.98 (m, 1H), 3.92 (s, 3H), 2.23 (s, 

3H). NMR data are in agreement with those from the literature.7

N-[4-(Trifluoromethyl)phenyl]-1-phenylethan-1-imine (3w)

N

CF3

Yellow solid (105.3 mg, 80% yield). 1H NMR (500 MHz, CDCl3): δ 8.02–7.93 (m, 

2H), 7.60 (d, J = 8.2 Hz, 2H), 7.54–7.42 (m, 3H), 6.91–6.84 (m, 2H), 2.23 (s, 3H). 

NMR data are in agreement with those from the literature.7

N-(Naphthalen-2-yl)-1-phenylethan-1-imine (3x)
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N

Yellow solid (106.7 mg, 87% yield). 1H NMR (500 MHz, CDCl3): δ 8.03–7.98 (m, 

2H), 7.83 (t, J = 8.5 Hz, 2H), 7.77 (d, J = 8.2 Hz, 1H), 7.50–7.42 (m, 4H), 7.05–7.36 

(m, 1H), 7.16 (d, J = 2.1 Hz, 1H), 7.06–7.01 (m, 1H), 2.27 (s, 3H). NMR data are in 

agreement with those from the literature.8

N-(1-Phenylethyl)aniline (4a)

HN

Colorless oil (88.8 mg, 90% yield). 1H NMR (500 MHz, CDCl3): δ 7.36 (d, J = 7.1 Hz, 

2H), 7.31 (t, J = 7.6 Hz, 2H), 7.25–7.19 (m, 1H), 7.08 (dd, J = 8.6, 7.3 Hz, 2H), 6.64 

(t, J = 7.3 Hz, 1H), 6.53–6.47 (m, 2H), 4.47 (q, J = 6.7 Hz, 1H), 4.03 (s, 1H), 1.50 (d, 

J = 6.8 Hz, 3H). NMR data are in agreement with those from the literature.9

N-(1-(4-Fluorophenyl)ethyl)aniline (4g)

HN

F

Yellow oil (90.4 mg, 84% yield). 1H NMR (500 MHz, CDCl3): δ 7.34–7.30 (m, 2H), 

7.11–7.06 (m, 2H), 7.02–6.96 (m, 2H), 6.68–6.63 (m, 1H), 6.50–6.47 (m, 2H), 4.46 (d, 

J = 6.7 Hz, 1H), 4.02 (s, 1H), 1.49 (d, J = 6.7 Hz, 3H). NMR data are in agreement 

with those from the literature.10

N-(1-(4-Chlorophenyl)ethyl)aniline (4h)
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HN

Cl

Colorless oil (93.8 mg, 81% yield). 1H NMR (500 MHz, CDCl3): δ 7.33–7.25 (m, 4H), 

7.09 (t, J = 7.8 Hz, 2H), 6.66 (t, J = 7.3 Hz, 1H), 6.47 (d, J = 8.0 Hz, 2H), 4.45 (q, J = 

6.7 Hz, 1H), 4.04 (s, 1H), 1.49 (d, J = 6.7 Hz, 3H). NMR data are in agreement with 

those from the literature.9

4-Methyl-N-(1-phenylethyl)aniline (4l)

HN

Yellow oil (90.9 mg, 86% yield). 1H NMR (500 MHz, CDCl3): δ 7.37–7.33 (m, 2H), 

7.32–7.27 (m, 2H), 7.23–7.17 (m, 1H), 6.89 (d, J = 8.3 Hz, 2H), 6.42 (d, J = 8.4 Hz, 

2H), 4.44 (q, J = 6.7 Hz, 1H), 2.18 (s, 3H), 1.49 (d, J = 6.7 Hz, 3H). NMR data are in 

agreement with those from the literature.9

4-Methoxy-N-(1-phenylethyl)aniline (4o)

HN

O

Yellow oil (100.0 mg, 88% yield). 1H NMR (500 MHz, CDCl3): δ 7.37–7.34 (m, 2H), 

7.33–7.28 (m, 2H), 7.25–7.18 (m, 1H), 6.68 (d, J = 8.7 Hz, 2H), 6.47 (d, J = 8.8 Hz, 

2H), 4.40 (q, J = 6.6 Hz, 1H), 3.68 (s, 3H), 1.49 (d, J = 6.9 Hz, 3H). NMR data are in 

agreement with those from the literature.9

N-(1-Phenylethyl)-[4-(trifluoromethyl)phenyl]aniline (4w)

HN

CF3
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Colorless oil (99.5 mg, 75% yield). 1H NMR (500 MHz, CDCl3): δ 7.37–7.28 (m, 6H), 

7.27–7.21 (m, 1H), 6.49 (d, J = 8.5 Hz, 2H), 4.50 (q, J = 6.7 Hz, 1H), 4.36 (s, 1H), 

1.52 (d, J = 6.7 Hz, 3H). NMR data are in agreement with those from the literature.11
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