## High capacity and fast removal of Cr(VI) by alkali lignin-based

## poly(tetraethylene pentamine-pyrogallol) sorbent

Rufei Xing <sup>a</sup>, Yanxin Song <sup>b\*</sup>, Tingting Gao <sup>c</sup>, Xiaoxia Cai <sup>a</sup>, Jinshui Yao <sup>a</sup>, Qinze Liu <sup>a\*</sup>, Changbin Zhang <sup>d</sup>

\* Corresponding author at: School of Materials Science and Engineering, Qilu

University of Technology (Shandong Academy of Sciences), #3501 Daxue Road,

Western University Science Park, Jinan City 250353, Shandong Province, P. R. China.

Tel: +008613806410075

E-mail: liuqinze@qlu.edu.cn (Prof. Qinze Liu, Ph.D)

\* Corresponding author at: School of Chemical Engineering & Pharmacy of Jining

Technician College, #3166 Chongwen Road, Jining City 272100, Shandong Province,

P. R. China.

Tel: +008615668106398

E-mail: syxlhy001@163.com (Prof. Yanxin Song, Ph.D)

<sup>&</sup>lt;sup>a</sup> School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China

<sup>&</sup>lt;sup>b</sup> School of Chemical Engineering & Pharmacy, Jining Technician College, Jining 272100, P. R. China

<sup>&</sup>lt;sup>c</sup> School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China

<sup>&</sup>lt;sup>d</sup> Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, P. R. China

## 1 Characterization

- 2 Fig. S1 shows the SEM and EDS spectra of AL-PTAP before adsorption of
- 3 Cr(VI). It can be seen from Fig. S1 that there is no chromium in AL-PTAP before
- 4 adsorption and there is no significant change in the surface morphology of AL-PTAP



5 before and after adsorption

Fig. S1. EDS mappings of AL-PTAP before adsorption.

- 6
- 7 Adsorption thermodynamic study

8 Thermodynamic parameters can be used to study the thermodynamic properties of 9 the adsorption process of Cr(VI) by AL-PTAP and determine whether the adsorption 10 process is a spontaneous reaction. Thermodynamic parameters such as enthalpy change 11 ( $\Delta$ H), entropy change ( $\Delta$ S) and Gibbs free energy ( $\Delta$ G) can be calculated from equation 12 (1). If the calculated  $\Delta$ G<0 and  $\Delta$ H>0, it proves that the adsorption process is 13 endothermic and spontaneous.<sup>1</sup> The formula for calculating the thermodynamic 14 parameters is as follows:

$$15 \quad \Delta G = \Delta H - T \Delta S \tag{1}$$

16

17 Van't Hoff equation:

$$18 \quad lnK_c = -\Delta H/RT + \Delta S/R$$

(2)

20 
$$K_c = C_a / C_e = (C_0 - C_e) / C_e$$
 (3)

where  $K_c$  (mg/L) is the standard thermodynamic equilibrium constant. T(K) is the ambient temperature. R (8.314 J mol/K) is the gas constant.  $C_a$  is the amount of Cr(VI) adsorbed on the adsorbent.  $C_e$  is the amount of residual Cr(VI) in the solution.

25 The values of  $\Delta G$ ,  $\Delta H$  and  $\Delta S$  were calculated from the slope and intercept of the 26 lnK<sub>c</sub> versus 1/T curve (Fig. S2, Table S1). The calculated  $\Delta G$ <0 indicates that the 27 adsorption process of Cr(VI) by AL-PTAP is spontaneous. The calculated  $\Delta H$ >0 28 reflects that the adsorption process is endothermic.



| 44 | Table S2. | Thermodynamic | parameters of Cr( | (VI) | ) removal b | y AL | -PTAP |
|----|-----------|---------------|-------------------|------|-------------|------|-------|
|----|-----------|---------------|-------------------|------|-------------|------|-------|

| Temperature (K) | Van't Hoff equation       | $\Delta G$ | ΔΗ       | $\Delta S$ |  |
|-----------------|---------------------------|------------|----------|------------|--|
|                 |                           | (KJ/mol)   | (KJ/mol) | (J/mol·K)  |  |
| 293.15          | $lnK_c = 6.0446 - 1636/T$ | -1.13      |          |            |  |
| 303.15          |                           | -1.63      | 13.6017  | 50.2548    |  |

19

45

46

## 47 BET surface area analysis.



| 66 |    |                                                                                     |
|----|----|-------------------------------------------------------------------------------------|
| 67 |    |                                                                                     |
| 68 |    |                                                                                     |
| 69 |    | References                                                                          |
| 70 | 1. | P. Sharma and M. R. Das, Journal of Chemical & Engineering Data, 2012, 58, 151-158. |
| 71 |    |                                                                                     |