SUPPLEMENTARY INFORMATION

The Dodeca-Coordinated La©B₈C₄^{+/0/-} Molecular Wheels: Conflicting Aromaticity versus Double Aromaticity†

Ying-Jin Wang,* Jia-Xin Zhao, Miao Yan, Lin-Yan Feng, Chang-Qing

Miao, and Cheng-Qi Liu

Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, Shanxi, China

*E-mail: yingjinwang@sxu.edu.cn

Supplementary Information

- **Table S1.** Cartesian coordinates for the $C_{4\nu}$ (¹A₁) GM La $@B_8C_4^+$, $C_{4\nu}$ (²B₁) GM La $@B_8C_4$, and D_{4h} (¹A_{1g}) LM La $@B_8C_4^-$ clusters at B3LYP level.
- Figure S1. Alternative optimized Low-lying isomers of $La OB_8C_4^+$ cluster. The relative energies are shown at the single-point CCSD(T) (for top five), B3LYP (in square brackets) and PBE0 (in curly brackets) levels, respectively. The relative energies at the B3LYP and PBE0 levels are corrected with the zero-point energies (ZPEs). All energies are in eV.
- **Figure S2** The top eleven Low-lying isomers of $La @B_8C_4$ cluster. The relative energies are shown at the single-point CCSD(T) (for top five), B3LYP (in square brackets) and PBE0 (in curly brackets) levels, respectively. The relative energies at the B3LYP and PBE0 levels are corrected with the zero-point energies (ZPEs). All energies are in eV.
- **Figure S3** The top ten Low-lying isomers of $La \ B_8 C_4^-$ cluster. The relative energies are shown at the single-point CCSD(T) (for top five), B3LYP (in square brackets)

and PBE0 (in curly brackets) levels, respectively. The relative energies at the B3LYP and PBE0 levels are corrected with the zero-point energies (ZPEs). All energies are in eV.

- **Figure S4.** Calculated Wiberg bond indices (WBIs) of the $C_{4\nu}$ (¹A₁) GM La©B₈C₄⁺, $C_{4\nu}$ GM (²B₁) La©B₈C₄ and D_{4h} (¹A_{1g}) LM La©B₈C₄⁻ clusters from the natural bond orbital (NBO) analyses at B3LYP level.
- **Figure S5.** Calculated natural atomic charges of the $C_{4\nu}$ (¹A₁) GM La©B₈C₄⁺, GM $C_{4\nu}$ (²B₁) La©B₈C₄ and D_{4h} LM (¹A_{1g}) La©B₈C₄⁻ clusters from the NBO analyses at B3LYP level.
- **Figure S6.** Occupied canonical molecular orbitals (CMOs) of the $C_{4\nu}$ (¹A₁) GM La©B₈C₄⁺ cluster. (a) Twelve σ CMOs for two-center two-electron (2c-2e) B–C/B–B Lewis σ bonds in B₈C₄ ring. (b) Five delocalized σ CMOs in La©B₈C₄⁺. (c) Four delocalized π CMOs in La©B₈C₄⁺.
- **Figure S7.** Occupied canonical molecular orbitals (CMOs) of the D_{4h} (${}^{1}A_{1g}$) LM La©B₈C₄⁻ cluster. (a) Twelve σ CMOs for 2c-2e B–C/B–B Lewis σ bonds in B₈C₄ ring. (b) Five delocalized σ CMOs in La©B₈C₄⁻. (c) Five delocalized π CMOs in La©B₈C₄⁻.
- **Figure S8.** Occupied canonical molecular orbitals (CMOs) of the $C_{4\nu}$ (²B₁) GM La©B₈C₄ cluster. (a) Twelve σ CMOs for 2c-2e B–C/B–B Lewis σ bonds in B₈C₄ ring. (b) Five delocalized σ CMOs in La©B₈C₄. (c) Five delocalized π CMOs in La©B₈C₄, the SOMO represents single occupation.
- **Figure S9.** Chemical bonding pattern of the $C_{4\nu}$ (²B₁) GM La©B₈C₄ cluster based on the unrestricted adaptive natural density partitioning (UAdNDP) analysis. Occupation numbers (ONs) are indicated.
- Figure S10. The calculated σ and π -ring current images of $C_{4\nu}$ (¹A₁) GM La©B₈C₄⁺ and D_{4h} (¹A_{1g}) LM La©B₈C₄⁻ clusters. The external magnetic field is perpendicular to the molecular wheels.

Figure S11. The energy cycle of $C_{4\nu}$ (²B₁) GM La©B₈C₄ cluster, along with the isomerization energy of B₈C₄ ring, bond dissociation energy (BDE) and inherent interaction energy between the central Y and B₈C₄ ring (in kcal mol⁻¹).

Figure S1. Alternative optimized Low-lying isomers of $La \ B_8 C_4^+$ cluster. The relative energies are shown at the single-point CCSD(T) (for top five), B3LYP (in square brackets) and PBE0 (in curly brackets) levels, respectively. The relative energies at the B3LYP and PBE0 levels are corrected with the zero-point energies (ZPEs). All energies are in eV.

Figure S2 The top eleven Low-lying isomers of $La @B_8C_4$ cluster. The relative energies are shown at the single-point CCSD(T) (for top five), B3LYP (in square brackets) and PBE0 (in curly brackets) levels, respectively. The relative energies at the B3LYP and PBE0 levels are corrected with the zero-point energies (ZPEs). All energies are in eV.

Figure S3 The top ten Low-lying isomers of $La \odot B_8C_4^-$ cluster. The relative energies are shown at the single-point CCSD(T) (for top five), B3LYP (in square brackets) and PBE0 (in curly brackets) levels, respectively. The relative energies at the B3LYP and PBE0 levels are corrected with the zero-point energies (ZPEs). All energies are in eV.

Figure S4. Calculated Wiberg bond indices (WBIs) of the $C_{4\nu}$ (¹A₁) GM La©B₈C₄⁺, $C_{4\nu}$ GM (²B₁) La©B₈C₄ and D_{4h} (¹A_{1g}) LM La©B₈C₄⁻ clusters from the natural bond orbital (NBO) analyses at B3LYP level.

Figure S5. Calculated natural atomic charges of the $C_{4\nu}$ (¹A₁) GM La©B₈C₄⁺, GM $C_{4\nu}$ (²B₁) La©B₈C₄ and D_{4h} LM (¹A_{1g}) La©B₈C₄⁻ clusters from the natural bond orbital (NBO) analyses at B3LYP level.

Figure S6. Occupied canonical molecular orbitals (CMOs) of the $C_{4\nu}$ (¹A₁) GM La©B₈C₄⁺ cluster. (a) Twelve σ CMOs for two-center two-electron (2c-2e) B–C/B–B Lewis σ bonds in B₈C₄ ring. (b) Five delocalized σ CMOs in La©B₈C₄⁺. (c) Four delocalized π CMOs in La©B₈C₄⁺.

Figure S7. Occupied canonical molecular orbitals (CMOs) of the D_{4h} (¹A_{1g}) LM La©B₈C₄⁻ cluster. (a) Twelve σ CMOs for 2c-2e B–C/B–B Lewis σ bonds in B₈C₄ ring. (b) Five delocalized σ CMOs in La©B₈C₄⁻. (c) Five delocalized π CMOs in La©B₈C₄⁻.

Figure S8. Occupied canonical molecular orbitals (CMOs) of the $C_{4\nu}$ (²B₁) GM La©B₈C₄ cluster. (a) Twelve σ CMOs for 2c-2e B–C/B–B Lewis σ bonds in B₈C₄ ring. (b) Five delocalized σ CMOs in La©B₈C₄. (c) Five delocalized π CMOs in La©B₈C₄, the SOMO represents single occupation.

Figure S9. Chemical bonding pattern of the $C_{4\nu}$ (²B₁) GM La©B₈C₄ cluster based on the unrestricted adaptive natural density partitioning (UAdNDP) analysis. Occupation numbers (ONs) are indicated.

Figure S10. The calculated σ and π -ring current images of $C_{4\nu}$ (¹A₁) GM La©B₈C₄⁺ and D_{4h} (¹A_{1g}) LM La©B₈C₄⁻ clusters. The external magnetic field is perpendicular to the molecular wheels.

Figure S11. The energy cycle of $C_{4\nu}$ (²B₁) GM La©B₈C₄ cluster, along with the isomerization energy of B₈C₄ ring, bond dissociation energy (BDE) and inherent interaction energy between the central Y and B₈C₄ ring (in kcal mol⁻¹).

Table S1.Cartesian coordinates for the $C_{4\nu}$ ($^{1}A_{1}$) GM La $^{\odot}B_{8}C_{4}^{+}$, $C_{4\nu}$ ($^{2}B_{1}$) GM La $^{\odot}B_{8}C_{4}$,and D_{4h} ($^{1}A_{1g}$) LM La $^{\odot}B_{8}C_{4}^{-}$ clusters at B3LYP level.

La $OB_8C_4^+$ GM ($C_{4\nu}$, ¹A₁)

В	1.35113700	2.46442600	-0.36429900
В	-1.35113700	2.46442600	-0.36429900
В	-2.46442600	1.35113700	-0.36429900
В	-2.46442600	-1.35113700	-0.36429900
В	-1.35113700	-2.46442600	-0.36429900
В	1.35113700	-2.46442600	-0.36429900
В	2.46442600	-1.35113700	-0.36429900
В	2.46442600	1.35113700	-0.36429900
С	0.00000000	2.75120900	-0.30958500
С	2.75120900	0.00000000	-0.30958500
С	0.00000000	-2.75120900	-0.30958500
С	-2.75120900	0.00000000	-0.30958500
La	0.00000000	0.00000000	0.38600000

La $@B_8C_4$ GM ($C_{4\nu}$, 2B_1)

В	1.35917900	2.46062800	-0.22652300
В	-1.35917900	2.46062800	-0.22652300
В	-2.46062800	1.35917900	-0.22652300
В	-2.46062800	-1.35917900	-0.22652300
В	-1.35917900	-2.46062800	-0.22652300
В	1.35917900	-2.46062800	-0.22652300
В	2.46062800	-1.35917900	-0.22652300

В	2.46062800	1.35917900	-0.22652300
С	0.00000000	2.75395800	-0.20845200
С	2.75395800	0.00000000	-0.20845200
С	0.00000000	-2.75395800	-0.20845200
С	-2.75395800	0.00000000	-0.20845200
La	0.00000000	0.00000000	0.24673200

La $\mathbb{C}B_8C_4$ LM (D_{4h} , $^1A_{1g}$)

В	1.36568600	2.45956300	0.00000000
В	-1.36568600	2.45956300	0.00000000
В	-2.45956300	1.36568600	0.00000000
В	-2.45956300	-1.36568600	0.00000000
В	-1.36568600	-2.45956300	0.00000000
В	1.36568600	-2.45956300	0.00000000
В	2.45956300	-1.36568600	0.00000000
В	2.45956300	1.36568600	0.00000000
С	0.00000000	2.76590000	0.00000000
С	2.76590000	0.00000000	0.00000000
С	0.00000000	-2.76590000	0.00000000
С	-2.76590000	0.00000000	0.00000000
La	0.00000000	0.00000000	0.00000000