### Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supplementary Data

Organocatalytic Chiral Polymeric Nanoparticles for Asymmetric Aldol Reaction

Meir Abuaf, Subhomoy Das, Yitzhak Mastai \*

Bar-Ilan University Ramat-Gan 52900, Israel

### Contents

| 1. | Structure of the monomers and polymers | .2 |
|----|----------------------------------------|----|
| a. | Scheme for the polymerization method   | .3 |
| 2. | Characterization of the monomers       | .4 |
| 3. | Characterization of the crosslinker    | 11 |
| 4. | DLS results of nanoparticles1          | 13 |
| 5. | HPLC chromatograms of the catalysts    | 13 |
| 6. | Reference1                             | 15 |

1. Structure of the monomers and polymers



N-Acryloyl-L-Leucine Methyl Ester

Poly(L- Leu-OMe)

n





N-Acryloyl-L-Phenylalanine Methyl Ester

Poly(L- Phe-OMe)





N-Acryloyl-L-Phenylalanine

Poly(L- Phe)



N-Acryloyl-L-Tryptophan

Poly(L- Trp)



N-Acryloyl-L-Proline

Poly(L- Proline)

Scheme S1. Structure of the synthesized monomers and polymers.



a. Scheme for the polymerization method

Scheme S2. Demonstration of miniemulsion polymerization<sup>1</sup>.

# 2. Characterization of the monomers

| Monomer                                            | <sup>1</sup> H NMR                                                                                                                                                                                                                                                                                                                                                                                         | <sup>13</sup> C NMR                                                                                                                                                                                                                                                                                            | Mass<br>Spectroscopy                                                                                                                                                                                             |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N-Acryloyl-<br>L-Leucine<br>Methyl Ester           | (CDCl <sub>3</sub> , 400 MHz) δ: 6.30<br>(dd, <i>J</i> = 17, 2 Hz, 1H), 6.13<br>(dd, <i>J</i> = 17, 10 Hz, 1H), 6.08<br>(brd, 8 Hz, 1H), 5.67 (dd, <i>J</i> =<br>10, 2 Hz, 1H), 4.73 (dd, <i>J</i> = 8, 5<br>Hz, 1H), 1.72-1.52 (m, 3H),<br>0.94 (t, <i>J</i> = 6 Hz, 6H).                                                                                                                                 | (CDCl <sub>3</sub> , 100 MHz) δ:<br>173.59 (C), 165.12 (C),<br>130.31 (CH), 127.16<br>(CH <sub>2</sub> ), 52.32 (CH),<br>42.82 (CH <sub>2</sub> ), 24.86<br>(CH), 22.74 (CH <sub>3</sub> ),<br>21.97 (CH <sub>3</sub> ).                                                                                       | m/z (ES <sup>+</sup> ): 222<br>([M+Na] <sup>+</sup> , 40), 200<br>(MH <sup>+</sup> , 40), 168 ([M-<br>OMe] <sup>+</sup> , 40), 140<br>([M-CO <sub>2</sub> Me] <sup>+</sup> , 100).                               |
| N-Acryloyl-<br>L-<br>Phenylalanine<br>Methyl Ester | (300 MHz, CDCl <sub>3</sub> ) $\delta$ : 7.33-<br>7.19 (m, 3H), 7.14-7.03 (m,<br>2H), 6.29 (dd, <i>J</i> = 18, 2 Hz,<br>1H), 6.09 (dd, <i>J</i> = 18, 10 Hz,<br>1H), 6.02 (brd, <i>J</i> = 8 Hz, 1H),<br>5.71 (dd, <i>J</i> = 10, 2 Hz, 1H),<br>4.97 (dt, <i>J</i> = 8, 6 Hz, 1H), 3.74<br>(s, 3H), abx system $\delta_A$ =3.20, $\delta_B$ =3.16 (dd, $J_{AB}$ =13 Hz, $J_{AX}$ =<br>$J_{BX}$ =6 Hz, 2H). | (100 MHz, CDCl <sub>3</sub> ) δ:<br>171.95 (C), 164.90 (C),<br>135.77 (C), 130.36<br>(CH), 129.32 (2xCH),<br>128.61 (2xCH), 127.20<br>(CH+CH <sub>2</sub> ), 53.18 (CH),<br>52.38 (CH <sub>3</sub> ), 37.88<br>(CH <sub>2</sub> ).                                                                             | m/z (ES <sup>+</sup> ): <del>256</del><br>234 ([M+Na] <sup>+</sup> ,<br>100), <del>234</del> 256<br>(MH <sup>+</sup> , 4), 202 ([M-<br>OMe] <sup>+</sup> , 3), 174<br>([M-CO <sub>2</sub> Me] <sup>+</sup> , 9). |
| N-Acryloyl-<br>L-<br>Phenylalanine                 | (300 MHz, DMSO-d <sub>6</sub> ) δ:<br>8.43 (d, 8Hz, 1H), 7.24 (m,<br>5H), 6.27 (q, 17, 10 Hz, 1H),<br>6.07 (dd, 17, 2 Hz, 1H), 5.57<br>(dd, 10, 2 Hz, 1H), 4.51 (ddd,<br>10, 8, 5 Hz, 1H), 3.09 (dd, 14,<br>5 Hz, 1H), 2.89 (dd, 14, 10 Hz,<br>1H)                                                                                                                                                         | (100 MHz, DMSO-<br>d <sub>6</sub> ) δ: 172.92 (C),<br>164.43 (C),137.59 (C),<br>131.24 (CH), 129.01<br>(2xCH), 128.17 (2xCH),<br>126.40 (CH <sub>2</sub> ), 125.69<br>(CH), 53.52(CH), 36.73<br>(CH <sub>2</sub> )                                                                                             | m/z (ES <sup>+</sup> ): 242<br>([M+Na] <sup>+</sup> , 100),<br>220 (MH <sup>+</sup> , 15), 202<br>([M-OH] <sup>+</sup> , 3), 174<br>([M-CO <sub>2</sub> H] <sup>+</sup> , 19).                                   |
| N-Acryloyl-<br>L-Tryptophan                        | (400 MHz, DMSO-d <sub>6</sub> ) δ:<br>10.8 (s, 1H), 8.4 (d, $J = 8$ Hz,<br>1H), 7.5 (d, $J = 0.8$ Hz, 1H) 7.3<br>(d, $J = 0.8$ Hz, 1H) 7.1 (d, $J =$<br>2.4 Hz, 1H) 6.9-7.0 (dt, 1 Hz,<br>2H), 6.3 (dd, $J = 6.8$ Hz, 1H),<br>6.0 (dd, $J = 2$ Hz, 1H) 5.5- (dd,<br>J = 10.4 Hz, 1H), 4.5 (m, $J =4.8 Hz 1H), 3.1 (dd, J = 5.8 Hz,1H), 3.0 (dd, J = 8.5 Hz, 1H).$                                          | <ul> <li>(100 MHz, DMSO-d<sub>6</sub>) δ: 173.59 (C),</li> <li>165.12 (C), <del>174</del> 136 (CH), <del>165.0</del> 131 (CH<sub>2</sub>),</li> <li>118.0-127.0 (CH),</li> <li>110.0-112.0 (CH<sub>2</sub>),</li> <li><del>24.86 (CH)</del>, 54.0 (CH<sub>3</sub>),</li> <li>28.0 (CH<sub>3</sub>).</li> </ul> | m/z (ES⁺): 259<br>(MH⁺, 100), 281<br>([M+Na]⁺, 60),                                                                                                                                                              |

| N-Acryloyl-<br>L-Proline | (400 MHz, CD <sub>3</sub> OD) δ: 6.7 (dd,<br>J = 10 Hz, 1H), 6.3 (dd, J= 2<br>Hz, 1H), 5.78 (dd, J= 2 Hz, 1H),<br>4.5 (dd, 1H), 3.6-3.8 (m, 2H),<br>1.9-2.4 (m, 4H) | (100 MHz, CD <sub>3</sub> OD)<br>δ: 175.0-175.4 (-<br>COOH), 167.1-167.4 (-<br>CONH-), 129.9 (-<br>CH=CH <sub>2</sub> ), 128.9 (-<br>CH=CH <sub>2</sub> ), 60.2<br>(>CHCOOH), 30.2-32.2<br>(>NCH <sub>2</sub> ), 25.6 (-CH <sub>2</sub> -<br>CHCOOH), 23.8<br>(>NCH <sub>2</sub> -CH <sub>2</sub> ) | m/z (ES⁺): 170<br>(MH⁺, 100) |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|

## Table S1. Characterization of the monomers by <sup>1</sup>H and <sup>13</sup>C NMR and MS instruments.











13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)











Figure S1. <sup>13</sup>C and <sup>1</sup>H NMR diagram of the monomers.





Figure S2. Mass diagram of the monomers.



Figure S3. FTIR results of the monomers.

### 3. Characterization of the crosslinker

|                                                   | <sup>1</sup> H NMR                                                                                                                               | <sup>13</sup> C NMR                                                                                                                                                                                                                | Mass                                                          |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Glutaric acid bis(N-<br>hydroxysuccinimide ester) | (400 MHz, DMSO-<br>d <sub>6</sub> ) δ: 10.8 (s, 1H),<br>8.4 (d, <i>J</i> = 8 Hz, 1H),<br>7.5 (d, <i>J</i> = 0.8 Hz,<br>1H) 7.3 (d, <i>J</i> = 0. | (100 MHz, DMSO-d <sub>6</sub> ) $\delta$ : 170.08<br>(N-C=O), 168.27 (C-C=O), 39.65<br>(CH <sub>2-</sub> CH <sub>2</sub> aliphatic), 25.35 (CH <sub>2-</sub><br>CH <sub>2</sub> aromatic), 19.59 (-CH <sub>2</sub> -<br>aliphatic) | m/z (ES <sup>+</sup> ):<br>259 ([M+Na] <sup>+</sup> ,<br>100) |

Table S2. Characterization of the crosslinker by <sup>1</sup>H NMR and <sup>13</sup>C NMR instruments.





Figure S4. <sup>13</sup>C and <sup>1</sup>H NMR and Mass diagram of the crosslinker.



Figure S5. FTIR results of the crosslinker.

### 4. DLS results of nanoparticles



Figure S6. DLS results of nanoparticles; L- Leu-OMe, L- Phe-OMe, L- Phe, L-Trp and L-Proline



#### 5. HPLC chromatograms of the catalysts

Figure S7. Non-crosslinked protected (L)-phenylalanine polymer, ee 39%.



Figure S8. Non-crosslinked unprotected (L)-phenylalanine polymer, ee 61%



Figure S9. Non-crosslinked unprotected (L)-tyrosine polymer, ee 57%.



Figure S10. Non-crosslinked unprotected (L)-tryptophan polymer, ee 86%.

6. Reference

1. Montenegro RV. Crystallization, biomimetics and semiconducting polymers in confined systems.

Universität Potsdam; 2003.