ESI for

Preferential Formation of Specific Hexose and Heptose in Formose Reaction under Microwave Irradiation

Akihito Hashidzume,*a Toru Imai,a Nanako Deguchi,a Takashi Tanibayashi,a Takumi Ikeda,a

Tomohiro Michitaka,a Satoki Kuwahara,^a Masaki Nakahata,a Yuri Kamon^b and Yasuto Todokoro^c

^a Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan. E-mail: hashidzume@chem.sci.osakau.ac.jp

^b Administrative Department, Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan.

^c Analytical Instrument Facility, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.

Table of Contents of ESI

Formose Reaction under MW irradiation Using Various Catalysts				
Formose Reaction by Heating with an Oil Bath	S4			
Table S1 Conditions and Results for Formose Reactions Using Various Catalysts	S6			
Table S2 The Total Energies Evaluated by DFT Calculations for the Isomers of	S 7			
Trioses, Tetroses and Pentoses				
Fig. S1 Apparent activities (A_{app}) for formose reaction under MW irradiation.	S 8			
Fig. S2 Time–conversion plots for formose reaction.	S9			
Fig. S3 The time evolution of temperature of the reaction mixture (5 mL).	S10			
Fig. S4 LS-MS data for the product obtained by formose reaction under MW irradiation.	S11			
Fig. S5 Two-dimensional NMR spectra for C7* and C6*.	S12			
Fig. S6 Chemical structures of the isomers of trioses, tetroses and pentoses.	S13			
Fig. S7 The differences in total energies (ΔE) for the isomers of trioses, tetroses and	S14			
pentoses, and a plausible reaction pathway for the preferential formation of C6* and C7* in				
the formose reaction under MW irradiation.				
Fig. S8 The saturation concentration of Ca(OH) ₂ in water at varying temperatures.	S15			
Fig. S9 SEM images for Ca(OH) ₂ crystallites.	S16			
Fig. S10 Formose reaction by heating with an oil bath.	S17			

Formose reaction under MW irradiation using various catalysts

To compare the activities of catalysts, we conducted formose reaction by irradiating an aqueous solution of formaldehyde (1.0 mol kg⁻¹, 5 mL) with MW at 2.45 GHz with a Biotage Initiator+ microwave synthesizer using various catalysts. The conditions and results are summarized in Table S1. The concentration of catalyst was fixed at 200 mmol kg⁻¹ unless otherwise specified. If the catalyst was not dissolved completely, the concentration was reported assuming complete dissolution. The concentrations of Ca(OH)₂ and Ba(OH)₂•8H₂O were reduced to 50 mmol kg⁻¹. The set temperature was fixed at 150 °C. The reaction time was determined depending on the activity of catalyst. In this study, the reaction time was adjusted close to the yellowing point, at which the yield of sugars is maximum. The conversions were evaluated with

conversion (%) =
$$\frac{[\text{HCHO}]_0 - [\text{HCHO}]}{[\text{HCHO}]_0} \times 100$$
 (S1)

where $[HCHO]_0$ and [HCHO] are the initial and final concentrations of formaldehyde determined by the acetylacetone method.^{S1} When hydroxides of alkali and alkali earth metals were used, the conversions were relatively high. In particular, Ca(OH)₂ and Ba(OH)₂•8H₂O showed a higher conversion even at a lower concentration (50 mmol kg⁻¹). When some organic bases (e.g., DABCO and *N*-methylpiperidine) were used as catalyst, formose reaction also proceeded efficiently. Using the data in the table, the apparent activities of catalysts (A_{cat}) were roughly estimated as

$$A_{\rm cat} = \frac{\rm conversion / 100}{tC_{\rm cat}}$$
(S2)

where t is the reaction time and C_{cat} is the catalyst concentration. As it can be seen in Fig. S1, hydroxides of alkali and alkali earth metals showed higher activities. DABCO and N-

methylpiperidine also exhibited higher activities.

Formose reaction by heating with an oil bath

In separate experiments, formose reaction was carried out by heating with an oil bath thermostated at 150, 100 and 60 °C to elucidate the effect of heat source. Figure S10A compares the timeconversion plots obtained at different temperatures. When formose reaction was carried out by heating with an oil bath thermostated at 150 °C, the conversion reached a quantitative one in ca. 1.5 min, which was slightly slower than that under MW irradiation (Fig. S2A). Using a 2-5 mL vial with an oil bath, the temperature of reaction mixture (5 mL) increased to ca. 90 °C in 1.5 min, and then increased gradually to 150 °C in the following 10 min (Fig. S3B). These observations indicate that MW irradiation was more effective than oil bath heating, resulting in faster formose reaction under MW irradiation. When an oil bath thermostated at 100 °C was used, the conversion increased to 40% in 10 min and then leveled off. At this set temperature, the heat source was critical for the conversion of formose reaction. At 60 °C, the conversion leveled off at ca. 20% These data were practically the same as those for formose reaction under MW after 120 min. irradiation at a set temperature of 60 °C. These products were treated with ion-exchange resins and also characterized by HPLC, as it can be seen in Fig. S10B. This figure shows the HPLC charts for the products of formose reaction by heating with an oil bath were practically the same as those for the products of formose reaction under MW irradiation. These observations indicate that high temperature (> ca. 100 °C) and short time are critical for the selectivity of formose reaction, but the type of heat source (MW or an oil bath) is not important.

Reference

S1 Y. Y. Maruo, J. Nakamura and M. Uchiyama, *Talanta*, 2008, **74**, 1141-1147.

catalyst	reaction	conversion	$A_{ m app}$	appearance of	
	time / min	/ %	$/ M^{-1} s^{-1}$	reaction mixture	
Ca(OH) ₂ ^b	3	71	$7.9 imes 10^{-2}$	clear	
Ba(OH) ₂ •8H ₂ O ^b	5	53	3.5×10^{-2}	clear	
NaOH	5	62	1.0×10^{-2}	clear	
LiOH•H ₂ O	5	56	9.3×10^{-3}	clear	
КОН	5	47	7.8×10^{-3}	clear	
Mg(OH) ₂	45	92	1.7×10^{-3}	yellow	
BaCO ₃	60	25	3.5×10^{-4}	clear	
Ag ₂ O	60	25	3.5×10^{-4}	clear	
Al ₂ O ₃	60	13	1.8×10^{-4}	clear	
DABCO °	5	57	9.5×10^{-3}	pale yellow	
N-methylpiperidine	15	81	4.5×10^{-3}	pale yellow	
2-(dimethyl)aminoethanol	30	97	$2.7 imes 10^{-3}$	brown	
N,N,N',N'-tetraethylethylenediamine	30	88	2.4×10^{-3}	pale yellow	
triethylamine	30	66	1.8×10^{-3}	pale yellow	
2-picoline	60	33	4.6×10^{-4}	clear	
imidazole	60	14	$1.9 imes 10^{-4}$	clear	
3-picoline	60	12	1.7×10^{-4}	clear	
pyridine	60	4	$5.6 imes 10^{-5}$	clear	

	Table S1	Conditions	and results	for fo	ormose	reactions	using	various	catalysts. ^a
--	----------	------------	-------------	--------	--------	-----------	-------	---------	-------------------------

^{*a*} Using a 1.0 mol kg⁻¹ HCHO aqueous solution and 200 mmol kg⁻¹ catalyst at 150 °C.

 b 50 mmol kg⁻¹.

^c 1,4-diazabicyclo[2.2.2]octane.

	total an angre / II autor a
Isomer	total energy / Hartree
C3-1	-343.69151754
C3-2	-343.7006881
C4-1RR	-458.25812444
C4-1RS	-458.26284904
C4-2	-458.26386122
C4-b2	-458.25762146
C5-1RRR	-572.8273971
C5-1RRS	-572.82488934
C5-1RSR	-572.83214616
C5-1RSS	-572.82637109
C5-2RR	-572.83624749
C5-2RS	-572.83430921
C5-3RR	-572.83740546
C5-3RS	-572.8259223
C5-1b2RR	-572.82373432
C5-1b2RS	-572.82471953
C5-1b3	-572.81450331
C5-2b3	-572.83143388

Table S2 The total energies evaluated by DFT calculations for the isomers of trioses, tetroses and pentoses.

Fig. S1 Apparent activities (A_{app}) for formose reaction under MW irradiation using 1.0 mol

 kg^{-1} formaldehyde and various catalysts at a set temperature of 150 °C.

Fig. S2 Time–conversion plots for formose reaction carried out using 1.0 mol kg⁻¹ formaldehyde and 55 mmol kg⁻¹ Ca(OH)₂ under MW irradiation (closed symbol) and by heating with an oil bath (open symbol) at (A) 150, (B) 100 and (C) 60 °C.

Fig. S3 (A) The time evolutions of temperature and pressure of the reaction mixture (5 mL) using a 2-5 mL vial under MW irradiation at a set temperature of 150 °C for 1 min and (B) the time evolution of temperature of the reaction mixture (5 mL) using a 2-5 mL vial by heating with an oil bath thermostated at 150 °C.

Fig. S4 LS-MS data for the product obtained by formose reaction under MW irradiation using 1.0 mol kg⁻¹ formaldehyde and 55 mmol kg⁻¹ Ca(OH)₂ at a set temperature of 150 °C for 45 s. (a) The LS chart. The MS data for (b) the signal b, (c) the signal c and (d) the signal d in the LC chart.

Fig. S5 Two-dimensional NMR spectra for C7* and C6* (D₂O). (A) HSQC and (B) HMBC for

C7*, (C) HSQC and (D) HMBC for C6*.

C4

C4-1RR

C4-1RS

C5

Fig. S6 Chemical structures of the isomers of trioses, tetroses and pentoses.

Fig. S7 (A) The differences in total energies (ΔE) for the isomers of trioses, tetroses and pentoses. (B) A plausible reaction pathway (indicated by thick arrows) for the preferential formation of C6* and C7* in the formose reaction under MW irradiation.

Fig. S8 The saturation concentration of Ca(OH)₂ ([Ca(OH)₂]_{sat}) in water at varying temperatures.

Fig. S9 SEM images for Ca(OH)₂ crystallites. (A) Ca(OH)₂ sample just received from the provider. (B) Ca(OH)₂ sample recovered by centrifugation of a mixture with water. (C) Ca(OH)₂ sample recovered by centrifugation of a mixture with water after MW irradiation at 150 °C for 1 min.

Fig. S10 Formose reaction by heating with an oil bath. (A) Time–conversion plots for formose reaction carried out using 1.0 mol kg⁻¹ formaldehyde and 55 mmol kg⁻¹ Ca(OH)₂ by heating with an oil bath thermostated at 150 (red circle), 100 (orange square) and 60 °C (dark yellow triangle). (B) HPLC charts for the products of formose reaction carried out using 1.0 mol kg⁻¹ formaldehyde and 55 mmol kg⁻¹ Ca(OH)₂ by heating with an oil bath thermostated at (a) 150, (b) 100 and (c) 60 °C for 2.33, 20 and 360 min, respectively.