Supplementary Information

Heterogeneous catalytic activation of peroxydisulfate toward degradation of pharmaceutical diclofenac and ibuprofen using scrap printed circuit board

Kosar Hikmat Hama Aziz^{1,2,3}

¹Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street Sulaimani City 46001, Kurdistan Region, Iraq

²Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development, Sulaimani, Iraq

* Corresponding author's email: <u>kosar.hamaaziz@univsul.edu.iq</u>

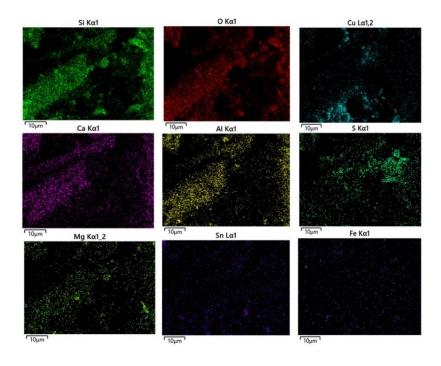


Fig. S1. SEM-EDS elemental mapping of NCC

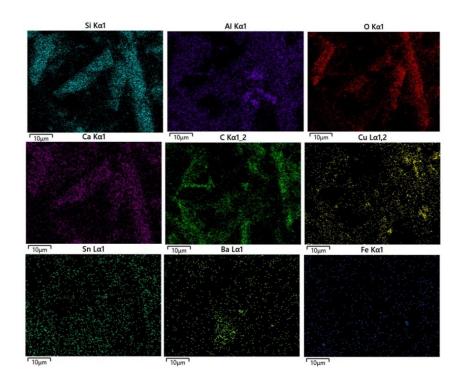


Fig. S2. SEM-EDS elemental mapping of CC

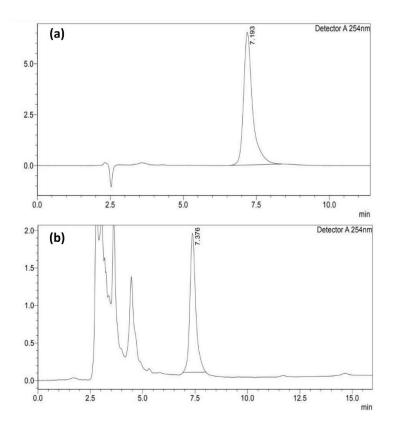


Fig. S3. Chromatogram of DCF, (a) before degradation (b) after degradation

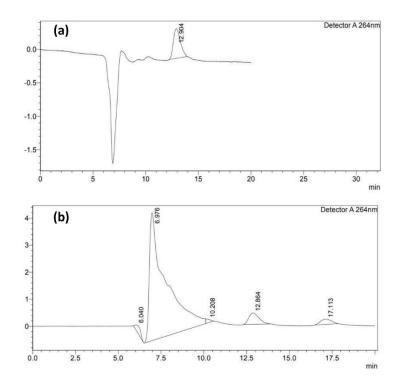


Fig. S4. Chromatogram of IBP, (a) before degradation (b) after degradation

	С-РС	в	NC-PCB			
Element's symbol	Peak binding energy (cy)	Element's state Element's symbol		Peak binding energy (ey)	Element's state	
Br(3d)	69.08	CH ₃ Br, organic Br, metal Br	Si(2p)	103.4	SiO ₂ , metal SiO ₄	
Si(2p)	103.2	SiO ₂ , metal SiO ₄	S(2P)	169.74	CaSO ₄ , metal SO ₄ , metal SO ₃ , organic SO ₂	
C(1s)	285	C-C or C-H, carbonate	C(1S)	285.14	C-C or C-H, carbonate	
Ca(2p)	348.55	CaCO ₃ , <u>CaO</u> element	Ca(2p)	348.08	CaCO ₃ , <u>CaO</u> element	
Sn(3d)	487.06	SnO, SnO ₂ element	Sn(3d)	486.89	SnQ, SnO ₂ element	
O(1s)	532.31	SiO ₂ , metal CO ₃ , metal oxide	O(1S)	531.94	SiO ₂ , metal CO ₃ , metal oxide	
Fe(2p)	716.02	Element	Fe(2p)	715.35	Fe ₂ O ₃ element	
Co(2p)	781	CoO, Co2O3, Co3O4 element	Co(2p)	780.89	CoO, Co ₂ O ₃ , Co ₃ O ₄ element	
Cu(2p)	934.97	CuQ element	Cu(2p)	934.4	CuO element	
Mg(1s)	1305.05	MgO element	Mg(1s)	1304.72	MgO element	
Metal oxide (CaQ, Co2O3, Co3O4, CoQ, SnQ, CuQ, Cu2O, MgO)			Metal oxide (CaQ, Co2O3, Co3O4, CoQ, SnQ, CuQ, Cu2O, MgO, Fe2O3)			
Elemental (Fe, Sn, Co, Mg, Cu)			Elemental (Fe, Sn, Co, Mg, Cu)			

Table S1. The chemical composition of both catalysts is detailed in the XPS results.

Table S2: Leaching metal ions from catalysts in the treated solution

Time(min)	Fe(ppm)	Ba(ppm)	Ag(ppm)	Al(ppm)	Cr(ppm)	N(ppm)	Zn(ppm)
0	0	0	0	0	0	0	0
5	L.D	0.479	L.D	L.D	L.D	L.D	L.D
15	L.D	0.627	L.D	L.D	L.D	L.D	L.D
25	0.0215	0.712	L.D	L.D	L.D	L.D	L.D
40	0.142	0.825	L.D	L.D	L.D	L.D	L.D
55	0.266	0.952	L.D	L.D	L.D	L.D	L.D
70	0.492	1.02	L.D	L.D	L.D	L.D	L.D

Acknowledgments

The author thanks the University of Sulaimani, Kurdistan-Iraq, for supporting the work and acknowledging the help of Razga Company in Kurdistan-Iraq for this research.

Conflicts of Interest

The authors declare no conflict of interest.