1	SUPPLEMENTARY MATERIAL
2 3	Insights on chalcone analogues with potential as antioxidant additive for diesel- biodiesel blends
4	
5 6 7 8	Igor D. Borges ^{*a,b} , Eduardo C. M. Faria ^{a,b} , Jean F. M Custódio ^a , Vitor S. Duarte ^{a,b} , Fernanda S. Fernandes ^c , Christian G. Alonso ^c , Flávio O. Sanches-Neto ^{a,d} , Valter H. Carvalho-Silva ^a , Guilherme R. Oliveira ^c and Hamilton B. Napolitano ^{*a}
9	
10 11 12 13 14 15	^a Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis, GO, Brasil ^b Centro de Pesquisa e Eficiência Energética, CAOA Montadora de Veículos LTDA, Anápolis, GO, Brasil. ^c Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil. ^d Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil.
17 18 19 20	* hamilton@ueg.br, i.dalarmelino@gmail.com Phone: +55 (62) 3328-1156
21	Contents
22 23 24	Table S1. The experimental (X-ray) geometric parameters of BCH and NCH: bond lengths (Å).
25	Table S2. The experimental (X-ray) geometric parameters of BCH and NCH: bond angle (°).
26 27 28	Figure S1. Angles between aromatic ring planes. BCH (a) $\delta_1 = 6.75$ (Ring 1 and 2), $\delta_2 = 13.03$ (Ring 2 and 3), NCH (b) $\delta_3 = 9.24$ (Ring 1 and 2), $\delta_4 = 6.62$ (Ring 2 and 3) and $\delta_5 = 21.83$ (Ring 1 and 3)

2	o
2	5

Table S1. The experimental (X-ray) geometric parameters of BCH and NCH: bond lengths (Å). BCH BCH NCH NCH Br1-C21 1.8985 0.9500 C14-H14 0.9500 O2-C9 1.3624 0.9500 0.9499 1.3708 C10-H10 O2-C8 1.4204 1.4221 C10-C11 1.3836 1.3845 O1-C7 1.2129 0.9500 0.9500 1.2136 C11-H11 0.9500 O3-C15 1.2281 1.2273 C1-H1 0.9500 C6-C7 1.4958 1.4895 C1-C2 1.3853 1.3836 C6-C1 1.3939 1.3960 0.9500 C23-H23 0.9500 1.3933 C23-C22 C6-C5 1.3959 1.3836 1.3833 C9-C14 1.3959 1.3942 C5-H5 0.9500 0.9500 C9-C10 1.3972 1.3931 C5-C4 1.3859 1.3903 C12-C13 1.4048 1.3998 C20-H20 0.9500 -C12-C15 1.4859 C20-C19 1.3854 1.3823 1.4865 C12-C11 1.3956 1.3949 C8-H8A 0.9900 0.9900 C18-C17 1.4629 1.4620 C8-H8B 0.9900 0.9899 C18-C23 1.4020 1.4005 C19-H19 0.9500 0.9499 C18-C19 1.3962 1.3963 C4-H4 0.9500 0.9499 C16-H16 0.9500 0.9500 C4-C3 1.3823 1.3802 C16-C17 1.3290 1.3343 C22-H22 0.9500 0.9500 C16-C15 1.4831 1.4821 C2-H2 0.9500 0.9500 0.9499 1.3957 C13-H13 0.9500 C2-C3 1.3899 C13-C14 1.3799 C3-H3 0.9500 0.9500 1.3812 C7-C8 1.5161 1.5172 C21-H21 0.9500 -C21-C20 1.3823 1.3805 04-N1 1.2273 -C21-C22 1.3821 1.3900 O5-N1 1.2242 -C17-H17 0.9500 0.9500 N1-C20 1.4707 _

30

31

	BCH	NCH		BCH	NCH
C9–02–C8	117.04	117.12	H8A–C8–H8B	108.42	108.37
C7–C6–C1	118.19	118.21	C18-C19-C20	121.73	119.22
C7–C6–C5	122.50	122.31	C18-C19-H19	119.13	120.38
C1–C6–C5	119.31	119.48	C20-C19-H19	119.13	120.40
O2–C9–C14	115.51	115.37	C5-C4-H4	119.64	119.73
O2–C9–C10	124.63	124.42	C5-C4-C3	120.72	120.53
C14–C9–C10	119.86	120.20	H4-C4-C3	119.64	119.75
C13-C12-C15	123.70	123.75	C21-C22-C23	119.38	120.49
C13-C12-C11	118.07	118.24	C21-C22-H22	120.31	119.75
C15-C12-C11	118.20	117.87	C23-C22-H22	120.31	119.76
C17–C18–C23	122.33	123.09	C1-C2-H2	120.14	120.00
C17–C18–C19	119.49	118.73	C1-C2-C3	119.72	120.00
C23-C18-C19	118.18	118.16	H2-C2-C3	120.14	120.00
H16-C16-C17	119.61	119.87	C4-C3-C2	119.75	119.92
H16-C16-C15	119.61	119.87	C4-C3-H3	120.12	120.03
C17–C16–C15	120.79	120.26	C2-C3-H3	120.12	120.04
C12-C13-H13	119.69	119.77	C20-C21-H21	-	121.19
C12-C13-C14	120.61	120.46	C22-C21-H21	-	121.19
H13-C13-C14	119.69	119.76	N1-C20-C19	-	117.77
O1–C7–C6	121.58	121.96	N1-C20-C21		119.13
01–C7–C8	121.72	121.39	04-N1-05	-	123.58
C6–C7–C8	116.69	116.64	O4-N1-C20	-	118.45
Br1-C21-C20	119.36	-	O5-N1-C20	-	117.96
Br1-C21-C22	118.94	-	C6-C1-H1	119.69	119.86
C20-C21-C22	121.69	117.62	C6-C1-C2	120.62	120.30
C18-C17-C16	127.01	127.13	H1–C1–C2	119.69	119.85
C18-C17-H17	116.50	116.43	C18-C23-H23	119.68	119.30
C16-C17-H17	116.49	116.43	C18-C23-C22	120.65	121.40
O3-C15-C12	120.52	120.69	H23-C23-C22	119.68	119.30
O3–C15–C16	120.77	120.69	C6-C5-H5	120.07	120.13
C12-C15-C16	118.71	118.61	C6-C5-C4	119.87	119.75
C9-C14-C13	120.40	120.26	H5-C5-C4	120.07	120.12
C9-C14-H14	119.80	119.87	C21-C20-H20	120.82	-
C13-C14-H14	119.80	119.87	C21-C20-C19	118.36	123.09
C9-C10-H10	120.46	120.64	H20-C20-C19	120.82	-
C9-C10-C11	119.09	118.73	02C8C7	108.09	108.40
H10-C10-C11	120.46	120.63	O2–C8–H8A	110.08	110.02
C12-C11-C10	121.95	121.99	O2–C8–H8B	110.08	110.02
C12-C11-H11	119.02	119.01	C7–C8–H8A	110.08	110.01
C10-C11-H11	119.02	119.01	C7–C8–H8B	110.08	110.02

Figure S1. Angles between aromatic ring planes. BCH (a) $\delta_1 = 6.75$ (Ring 1 and 2), $\delta_2 = 13.03$ (Ring 2 and 3), NCH (b) $\delta_3=9.24$ (Ring 1 and 2), $\delta_4 = 6.62$ (Ring 2 and 3) and $\delta_5 = 21.83$ (Ring 1 and 3)

34