Supporting Information

for

A Molecular Dynamics Study on Adsorption Mechanisms of Polar, Cationic, and Anionic Polymers on Montmorillonite

Yuanzhi Qu^{†1}, Ling Lin^{†2}, Shifeng Gao¹, Yukun Yang², Hongjun Huang¹, Xin Li²,

Han Ren¹, and Wenjia Luo^{2*}

1. CNPC Engineering Technology R&D Company Limited, Beijing, 102206, P. R. China

2. School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, P.R. China

† Yuanzhi Qu and Ling Lin contributed equally to this work

*Corresponding Author

Dr. Wenjia Luo

Email: luowenjia@swpu.edu.cn

1. Molecular models of four polymers

Figure S1. Structures of (a) poly-AA, (b) poly-DADMAC, (c) poly-AADADMAC, and (d) poly-AM chains. Red, gray, white, and blue represent O, C, H, and N atoms, respectively. For charged polymers poly-AA and poly-DADMAC, counter ions K⁺ and Cl⁻ are not shown in this figure but are added to the salt solutions to make the systems charge-neutral.

2. Effects of temperatures

Figure S2 shows the desorption behaviors of four polymers at different temperatures (275K, 300K, 400K, and 500K). This figure is intended to supplement Figure 2 in the main manuscript by providing the results of three separate MD runs under each simulation condition.

Table S1 lists the D_s of K⁺, Cl⁻, polymer chains, and water under different temperatures. This table is intended to supplement Table 2 in the main manuscript. It is evident that D_s of K⁺, Cl⁻, and water are similar under the same temperature no matter which polymer is present. However, the D_s values of polymer chains are rather different with stronger adsorbed chains having smaller D_s values.

4.0

3.5

0.5

0.0

4.0

3.5

Polymer/MMT Distance (nm)

0.5

0.0

4.0

3.5

Polymer/MMT Distance (nm)

0.5

0.0

5

5

average

run 1

run 2

run 3

4

5

average

run 1

run 2

run 3

4

average

run 1

run 2

run 3

Figure S2. The polymer/MMT distances (curves, axis on the right) and the ratios of adsorbed polymer chains (bars, axis on the left) of four polymers at 275 K, 300 K, 400 K, and 500 K (16 cases). All simulations in this figure were performed with a 10 KCl wt% salt concentration and at 50 MPa pressure.

			$D (10^{-9} \text{ m}^{2}/\text{s})$				
Polymer	T (K)	Density (g/cm^3)	$\frac{D_{s}(10 \text{ m/s})}{1}$				
			K^+	Cl-	polymer	water	
		(0)			chains		
poly-AA	275	1.1208	0.3111	0.3066	0.0527	0.4899	
poly-DADMAC	275	1.0971	0.3122	0.2764	0.0158	0.4739	
poly-AADADMAC	275	1.0976	0.3228	0.3004	0.0377	0.5064	
poly-AM	275	1.1000	0.3464	0.3355	0.0091	0.519	
poly-AA	300	1.1093	0.542	0.5829	0.1014	0.9099	
poly-DADMAC	300	1.0856	0.5995	0.5493	0.0513	0.9261	
poly-AADADMAC	300	1.0863	0.5317	0.5455	0.0615	0.9397	
poly-AM	300	1.0891	0.5773	0.5323	0.0233	0.9754	
poly-AA	400	1.0388	2.4737	2.6243	0.5059	4.5685	
poly-DADMAC	400	1.0183	1.9866	2.3571	0.4728	4.418	
poly-AADADMAC	400	1.0175	2.0013	2.4568	0.4678	4.4786	
poly-AM	400	1.0210	2.5375	2.8007	0.1264	4.7123	
poly-AA	500	0.9377	5.5131	6.8107	2.4269	11.3472	
poly-DADMAC	500	0.9192	5.5412	6.5436	1.2065	11.1709	
poly-AADADMAC	500	0.9201	5.085	6.0492	0.8268	10.9178	
poly-AM	500	0.9210	5.1615	6.0597	0.9311	11.0687	

Table S1. The density of polymer/salt solution and D_s of K^+ , Cl^- , polymers chains, and water under different temperatures.^{*}

* All simulations in this table are at 50 MPa and with 10 wt% KCl.

3. Effects of pressures

Polymer	D	Density	D _s (10-	⁹ m ² /s)		
	(MPa)	(g/cm ³)	K^+	Cl-	polymer chains	water
poly-AA	20	1.0243	2.5389	2.6277	0.6325	4.6898
poly-AA	50	1.0388	2.4737	2.6243	0.5059	4.5685
poly-AA	200	1.0961	2.1033	2.3932	0.4014	3.9778
poly-DADMAC	20	1.0026	2.9239	3.3362	0.5737	5.1414
poly-DADMAC	50	1.0183	1.9866	2.3571	0.4728	4.4180
poly-DADMAC	200	1.0742	1.8962	2.4684	0.4382	3.9851
poly-AADADMAC	20	1.0036	1.9613	2.5227	0.5182	4.6086
poly-AADADMAC	50	1.0175	2.0013	2.4568	0.4678	4.4786
poly-AADADMAC	200	1.0741	1.5651	2.3218	0.5069	3.9729
poly-AM	20	1.0062	2.7822	2.9009	0.2010	5.0242
poly-AM	50	1.0210	2.5375	2.8007	0.1264	4.7123
poly-AM	200	1.0790	2.5489	2.5797	0.1563	4.2885

Table S2. The density of polymer/salt solution and D_s of K^+ , Cl^- , polymers chains, and water under different pressures.^{*}

* All simulations in this table are at 400 K and with 10 wt% KCl.

4. Effects of salinity

Figure 4 in the main manuscript demonstrates the desorption behaviors of polymers at 500 K. As a comparison, Figure S3 below shows the results at 275 K.

Figure S3. The polymer/MMT distances (curves, axis on the right) and the ratios of adsorbed polymer chains (bars, axis on the left) of four polymers under different KCl concentrations. All simulations in this figure were performed at 275 K and 50 MPa pressure.

Polymer		KCl ^b - (wt %)	$D_{s}(10^{-9} m^{2}/s)$				
	T (K)		K^+	Cl	polymer chains	water	
poly-AA	275	0	0.2975	-	0.0691	0.5039	
poly-AA	275	5	0.3197	0.3084	0.0464	0.5006	
poly-AA	275	10	0.3111	0.3066	0.0527	0.4899	
poly-AA	275	20	0.2527	0.2519	0.0233	0.4291	
poly-DADMAC	275	0	-	0.2789	0.0287	0.514	
poly-DADMAC	275	5	0.3154	0.2977	0.0256	0.5089	
poly-DADMAC	275	10	0.3122	0.2764	0.0158	0.4739	
poly-DADMAC	275	20	0.2745	0.2536	0.0218	0.4361	
poly-AADADMAC	275	0	-	-	0.0256	0.5140	
poly-AADADMAC	275	5	0.3014	0.3157	0.0219	0.5066	
poly-AADADMAC	275	10	0.3228	0.3004	0.0377	0.5064	
poly-AADADMAC	275	20	0.2464	0.2395	0.0232	0.4559	
poly-AM	275	0	-	-	0.0083	0.5525	
poly-AM	275	5	0.3321	0.3141	0.0058	0.5373	
poly-AM	275	10	0.3464	0.3355	0.0091	0.5190	
poly-AM	275	20	0.2939	0.2783	0.0053	0.4694	
poly-AA	500	0	5.0164	-	3.0270	13.3395	
poly-AA	500	5	4.7940	6.1801	1.0897	11.4852	
poly-AA	500	10	5.5131	6.8107	2.4269	11.3472	
poly-AA	500	20	4.3849	4.9149	1.3108	9.3031	
poly-DADMAC	500	0	-	5.9761	1.0113	12.2470	
poly-DADMAC	500	5	4.8620	6.6595	1.3979	11.8455	
poly-DADMAC	500	10	5.5412	6.5436	1.2065	11.1709	
poly-DADMAC	500	20	4.5734	5.0952	0.8976	9.4739	
poly-AADADMAC	500	0	-	-	2.2570	13.2665	
poly-AADADMAC	500	5	5.2066	6.4398	1.5864	11.9313	
poly-AADADMAC	500	10	5.0850	6.0492	0.8268	10.9178	
poly-AADADMAC	500	20	4.3857	5.0773	1.2199	9.3176	
poly-AM	500	0	-	-	1.1394	12.3378	
poly-AM	500	5	3.9280	7.4439	0.9045	11.6958	
poly-AM	500	10	5.1615	6.0597	0.9311	11.0687	
poly-AM	500	20	4.4523	4.8448	0.5926	9.5864	

Table S3. D_s of K⁺, Cl⁻, polymers chains, and water under different KCl concentrations and temperatures.^a

^a All simulations in this table are at 50 MPa.

^b In cases where the concentration of KCl equals 0%, there are still K⁺ ions in poly-AA solutions and Cl⁻ ions in poly-DADMAC solutions to counter the negative and positive charges carried by the polymer chains, respectively. In these cases, either Cl⁻ or K⁺ is absent from the system, and their D_s are shown as '-' in the table.

5. Effects of salt types

Figure S4. The polymer/MMT distances and the ratios of adsorbed polymer chains of four polymers as functions of MD simulation time in 10 wt% KCl and 7.54 wt% CaCl₂ solutions at 275 K and 50 MPa.

			D _s (10 ⁻⁹ m ² /s)			
Polymer	T (K)	Salt ^b	K^+ or	C1-	polymer	water
			Ca ²⁺	CI	chains	water
poly-AA	275	KC1	0.3111	0.3066	0.0527	0.4899
poly-AA	275	$CaCl_2$	0.1297	0.2224	0.0189	0.3804
poly-DADMAC	275	KC1	0.3122	0.2764	0.0158	0.4739
poly-DADMAC	275	CaCl ₂	0.1035	0.2306	0.022	0.386
poly-AADADMAC	275	KC1	0.3228	0.3004	0.0377	0.5064
poly-AADADMAC	275	$CaCl_2$	0.0872	0.2277	0.0193	0.3844
poly-AM	275	KCl	0.3464	0.3355	0.0091	0.519
poly-AM	275	CaCl ₂	0.1053	0.2269	0.0067	0.3965
poly-AA	500	KC1	5.5131	6.8107	2.4269	11.3472
poly-AA	500	$CaCl_2$	2.9594	4.8637	1.331	10.3893
poly-DADMAC	500	KC1	5.5412	6.5436	1.2065	11.1709
poly-DADMAC	500	$CaCl_2$	2.533	4.8374	0.877	9.9246
poly-AADADMAC	500	KC1	5.085	6.0492	0.8268	10.9178
poly-AADADMAC	500	CaCl ₂	2.6273	6.0456	1.3196	10.631
poly-AM	500	KCl	5.1615	6.0597	0.9311	11.0687
poly-AM	500	CaCl ₂	2.7439	4.9962	0.5305	10.3349

Table S4. D_s of cations, Cl⁻, polymers chains, and water in KCl or CaCl₂ solutions.^a

^a All simulations in this table are at 50 MPa.

 b Salt concentrations are 10 wt% for KCl and 7.54 wt% CaCl_2, respectively.

6. Adsorption mechanisms at 275 K

MMT at 275 K, 50 MPa, in 10 wt% KCl solutions.

7. Desorption under high temperatures

Figure S6. RDF of four polymers adsorbed on MMT at 300 K, 400 K, and 500 K.

All simulations in this figure are at 50 MPa, in 10 wt% KCl solutions.