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ESI Tables 

Table 2 Comparison of experimental CMC values (mM) for DM, UDM, and DDM with calculated 
values based on different models (see main text and Table 3) using ���� = 54.65 M and the 
traditional definition of the CMC, in which ��� = ln ���� (except for model 7a). Data for model 9 
are the same as in Table 1. 

Model a DM UDM DDM rmsd b 

exp. 1.30 ± 0.07 0.38 ± 0.02 0.090 ± 0.005 − 

1 6.10 1.12 0.304 2.81 

2 1.12 0.18 0.037 0.16 

3 1.86 0.28 0.069 0.33 

4 1.31 0.30 0.094 0.05 

5 1.71 0.37 0.110 0.24 

6 1.46 0.31 0.090 0.10 

7 1.31 0.37 0.094 0.01 

7a c 1.03 0.30 0.080 0.16 

8 1.46 0.38 0.090 0.09 

9 1.44 0.37 0.087 0.08 

a (1) TMT model with ��� from group contributions based on transfer free energies and ��� 
computed using the macroscopic interfacial tension ���;1 (2) surface-based approach (SES) as in 
ref. 1 using the macroscopic interfacial tension ��� in ���∗ ; (3) SES* approach, i. e., SES approach 
using the refined molecule surfaces �∗ (see main text); (4) TMT approach as in 1, but using the 
microscopic interfacial tension �;2 (5) SES* approach with the same value for the interfacial tension 
as in 4; (6): SES* approach with � = 33.06 mM m��;3 (7) model 4 with re-defined micelle 
geometry for UDM (see main text); (8) model 6 with re-defined micelle geometry for UDM (see 
main text); (9): New model with fitted interfacial tension � (Fig. 4, “old CMC”) and re-defined 
micelle geometry for UDM (see main text).  
b Root mean square deviation in mM. 
c Model 7a has the same ��� as model 7, but employs eq. (21) instead of eq. (14). 
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Table 3 Parameters used in the various models listed in Table 2. 

Model a 1 2 3 4 5 6 7 8 9 

���  
/ mN m−1 

50.0 
± 1.0 

50.0 
± 1.0 

50.0 
± 1.0 

32.7 b 
 

32.7 b 
 

33.06 
± 0.35 

32.7 b 
 

33.06 
± 0.35 

− 

�  
/ mN m−1 

− − − − − − − − 32.80 ± 
0.095 c ���(CH#) d − 3.72 − − − 3.72 − − − 3.72 − − ���(CH%) e − 1.45 − − − 1.45 − − − 1.45 − − & f − 0.71 0.71 − 1 1 − 1 1 

�(CH#) / Å2 g − 35.02 36.27 − 36.27 36.27 − 36.27 36.27 

�(CH%) / Å2 h − 19.85 19.04 − 19.04 19.04 − 19.04 19.04 

a See footnote a to Table 2. Models 7, 8, and 9 employ a refined geometry for UDM. 
b Value from Sharp et al. (ref. 2); no error given. 
c From fit (see Fig. 4, “old CMC”). 
d Group contribution from methyl group to the transfer free energy in units of '() (cp. ref. 1; error ± 0.07). 
e Group contribution from methylene group to the transfer free energy in units of '() (cp. ref. 1; error 
 ± 0.02). 
f Correction factor; see eq. (34). & = 1 means that no correction factor is used in ���∗ ; see eq. (35). 
g Group contribution from methyl group to the molecular surface. Values in model 2 are from ref. 1, the 
 other values are from the present work. 
h Group contribution from methylene group to the molecular surface. Values in model 2 are from ref. 1, the 
 other values are from the present work. 

Table 4 Average values for the aggregation number m of alkyl maltoside micelles for different 
lengths n of the alkyl chain, compiled from several sources.  + , Reference 

8 47.7 ± 5.7 Oliver et al., 2013;4 Kunji et al., 2008.5  

9 60.5 ± 5.5 Kunji et al., 2008.5 

10 82.1 ± 9.1 Lipfert et al., 2007;6 Oliver et al., 2013;4 Kunji et al., 2008.5 

11 105 Kunji et al., 2008.5 

12 134.4 ± 11.6 Lipfert et al., 2007;6 Oliver et al., 2013;4 Kunji et al., 2008;5 

Tummino and Gafni, 1993;7 Jumpertz et al., 2011.8 

13 186 Kunji et al., 2008.5 
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Table 5: Parameters used in the molecular thermodynamic modelling of ��� according to eq. (40) 
and Sections 2.4 and 2.5 (- = 4.6 Å; ./ = 21 Å2; .1 = 40 Å2; 2 = (+ + 1)/3.6; 56 = (78%)�/#; ���� = 55.32 M corresponding to 150 mM KCl;a ) = 293 K). Values of CMC(exp) from Alpes et 
al.9 with the value for DDM (+ = 12) taken over from De Grip and Bovee-Geurts.10 Experimental 
error assumed to be 5.6 %. 

+ 8 9 10 12 2 2.5000 2.7778 3.0566 3.6111 7 / Å 10.45 11.35 12.25 14.05 8 / Å 18.25 20.88 23.50 28.75 > 0.820 0.839 0.853 0.873 56 / Å 15.16 17.04 18.91 22.65 �1?�@ 1.61 1.83 2.05 2.49 . / Å2 65.12 63.13 57.30 50.75 �∗ / Å2 169.5 188.6 207.6 245.7 A / (N/m)−1 −309.86 −361.98 −423.35 −533.69 �6� 0.95 1.00 1.20 1.55 , 47 62 85 140 ���(exp; ,) −7.31 −8.80 −9.91 −12.59 ���(exp; ∞) −7.64 −9.08 −10.13 −12.75 CMC(calc; ,) /mM 30.65 8.21 1.91 0.14 CMC(calc; ∞) /mM 35.35 8.74 1.87 0.12 CMC(exp) / mM 26.50 ± 1.48 6.30 ± 0.35 2.20 ± 0.12 0.16 ± 0.01 

a Computed from ���� = (F − �H�IJH�I) J�?�⁄ + �H�I with F = 1.005 g mL⁄ , �H�I = 0.15 M, JH�I = 74.551 g mol⁄ , and J�?� = 18.015 g mol⁄ . 
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ESI Figures 

 

Fig. 7 Determination of the surface area of alkyl tails from alkyl maltosides. The solvent-excluded surface 
of molecular models of maltose, alkanes and alkyl maltosides was measured using the MSMS script.11 
Then, using the linear relations in eq. (39) of the main text, the surface of the alkyl tail was calculated 
by subtracting the maltose portion of the surface from the surface area of the whole detergent 
molecule. The molecular models in this figure do not represent the solvent-excluded surface. Instead, 
a ball and stick model is used with coloring according to the CPK convention. 

 

Fig. 8 When experimental values for the aggregation number , of alkyl maltosides are plotted 
against the alkyl chain length +, an exponential dependence is obtained. The data was compiled from 
several sources (see Table 4). 
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Fig. 9 Lengths of the semiaxes 7 and 8 of an ellipsoid describing the micelles of octyl-, decyl-, and 
dodecyl maltoside based on SAXS.4 Due to the nearly perfect linear relationship between the length 
of each semiaxis and the alkyl chain length +, the values for undecyl maltoside (+ = 11) can be 
calculated by linear interpolation. 

 

Fig. 10 Relative deviation QCMC(calc) − CMC(exp)R CMC(exp)⁄  for the different data sets and both 
definitions of the CMC. The numbers refer to the alkyl chain length + and the letters to the source 
of experimental data (A: Alpes et al., 1986;9 M: Müh et al. 20151). 
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ESI Text 

S1: Modelling the steric free energy STU 
The steric free energy accounts for the repulsion between the polar head groups of adjacent 
detergent molecules within the micelle and is generally considered to be the component that 
limits the micelle growth to a certain aggregation number. The mathematical expression for �6� 
in eq. (32) of the main text was suggested based on the van-der-Waals equation of state:12, 13 

V = 5)W − 8 − 7W%                                                                                                                                (S1) 

where V is the pressure, 5 the gas constant, ) the absolute temperature, W the molar volume, 8 
the volume excluded by a mole of molecules, and 7 the parameter representing attractive 
interactions. Since we are interested only in excluded volume effects, we neglect the attractive 
interactions. Then, with 7 = 0, we can formally compute the work Y required to “blow up” the 
molecules from point particles to real molecules excluding the volume 8: 

Y = − Z V[8\
/ = −5) ln ]W − 8W ^                                                                                              (S2) 

For one molecule, this can be translated into a standard chemical potential difference between a real 
molecule with excluded volume _/ and actually occupied volume _� and a point particle occupying 
the volume _�: 

Δa6�� = −'() ln ]_� − _/_� ^ = −'() ln ]1 − _/_�^                                                                     (S3) 

where '( is Boltzmann´s constant. 

In order to arrive at eq. (32), we consider the motion of detergent head groups to be restricted to the 
surface area of the micellar core. The steric repulsion then is a function of the ratio of the excluded 
area (cross-sectional area) of one head group .1 and the total surface area of the micellar core per 
detergent molecule .: 

Δa6�� = −'() ln ]1 − .1. ^                                                                                                            (S4) 

Dividing by '(), we obtain �bc. 
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S2: Alternative derivation of eq. (20) 

Phillips investigated the formation of micelles for the case of ionic detergents, where the 
micelles bear an effective charge d and are interacting with counter ions.14 We repeat his 
derivation for nonionic detergents with d = 0 and no counter ions. With the assumption of a 
fixed aggregation number , (mass action model), we can write the equilibrium constant e for 
micelle formation as e = f,gh = i�hjklm                                                                                                                      (S5) 

where f ,⁄  is the mole fraction of micelles, g the mole fraction of detergent monomers, and ��� the micellization free energy per detergent molecule in the micelle divided by the thermal 
energy '(). Then, f = ,egh                                                                                                                                        (S6) 

Phillips assumes n to be an ideal property, i. e., a measurable quantity that is proportional to 
the mole fraction (or concentration) of detergent monomers or micelles, so that the breaking 
point in the experimental titration curve coincides with the breaking point in the dependence of g or f ,⁄  on the total detergent concentration o. Corresponding to his equations (5) and (6), we 
have in our symbolism n = .�g + .% f, = .�g + .%egh                                                                                             (S7) 

(with .� and .% being proportionality constants) as well as o = g + f = g + e,gh                                                                                                               (S8) 

Differentiating both equations (S7) and (S8) with respect to g, we find [n[g = .� + .%e,gh��                                                                                                                 (S9) [o[g = 1 + e,%gh��                                                                                                                    (S10) 

Then, [n[o = [n[g [g[o = .� + .%e,gh��1 + e,%gh��                                                                                             (S11) 

[%n[o% = [g[o [[g ][n[o^ = e Q.%, − .�,%R(, − 1),gh�%(1 + e,%gh��)#                                                   (S12) 

and [#n[o# = [g[o [[g p[%n[o% q = e Q.%, − .�,%R(1 + e,%gh��)r Ω                                                                    (S13) 

with Ω = (, − 2)(, − 1)gh�# + e,%(, − 1)(1 − 2,)g%h�t                                            (S14) 

Assuming .%, − .�,% ≠ 0, eq. (16) of the main text implies Ω = 0. Dividing this result by , − 1 
and by gh�# yields 0 = , − 2 + e,%(1 − 2,)gh��                                                                                            (S15) 

It follows from eq. (S8) that gh = o − ge,                                                                                                                                    (S16) 

Plugging eq. (S16) into (S15) and rearranging yields eq. (20) of the main text. 
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S3: Draft of a non-ideal solution model 

In the draft model, the Gibbs free energy of the solution is given by v = vw + v�x + v��                                                                                                                   (S17) 

where vw is given by eq. (3) of the main text. The difference to the ideal solution model is in 
the free energy of mixing, v�x, which we want to improve by considering excluded volume 
effects, and in the free energy of interaction between solutes, v��, which we shall describe in 
the framework of a mean field approach. 

The root idea of considering excluded volume effects in the entropy of mixing as formulated 
by Hildebrand15 is based on an equation of state of the van-der-Waals type, where as in the 
modelling of the steric free energy �bc (see Text S1 above), 7 = 0. Then, the entropy change of 
expanding the gas isothermally from a volume _�  to a volume _% is given by Δ� = 5 ln ]_% − 8_� − 8^                                                                                                                      (S18) 

Thus, the entropy change is determined by the change in free volume _ − 8. 

In the following we work again with particle numbers and the Boltzmann constant instead of 
mole numbers and the gas constant. To obtain the entropy of mixing for a binary liquid 
mixture, we consider the transfer from 2� molecules of type 1 and 2% molecules of type 2 with 
excluded volumes 8� and 8%, respectively, from the pure state, where they occupy the 
respective volumes v� and v%, to a solution with total particle number 2� + 2%. Since the 
considered molecules are polyatomic, they have internal degrees of freedom (DOFs) due to 
vibrations, rotations, and librations. We follow Hildebrand15 and assume that the energy in 
these internal DOFs is not significantly different in the pure state and in the solution. Then, the 
entropy of mixing is obtained by considering for each component the expansion from its free 
volume 2z(vz − 8z) in the pure state to its free volume _ − 2�8� − 2%8% in the mixture, where _ 
is the actual volume of the solution: Δ� = '( {2� ln |_ − 2�8� − 2%8%2�(v� − 8�) } + 2% ln |_ − 2�8� − 2%8%2%(v% − 8%) }~                                    (S19) 

A simplifying assumption is that the solution is additive,15 i. e., there is no volume change due 
to mixing: _ = 2�v� + 2%v%                                                                                                                          (S20) 
Then, eq. (S19) becomes Δ�'( = 2� ln �2�(v� − 8�) + 2%(v% − 8%)2�(v� − 8�) � + 2% ln �2�(v� − 8�) + 2%(v% − 8%)2%(v% − 8%) �      (S21) 

With these settings, we now consider an aqueous solution of a detergent with – for the sake of 
simplicity – only one type of co-solute. We shall use the index “w” for water, “c“ for the co-
solute, and “ν” for a detergent aggregate with ν detergent molecules. We introduce the 
abbreviations �z = vz − 8z                                                                                                                                   (S22) 
and � = 2��� + 2��� + � 2����                                                                                                (S23) 

so that the free energy of mixing becomes 

v�x = −'() �2� ln | �2���} + 2� ln | �2���} + � 2� ln | �2���}� �                                (S24) 

To model v��, we employ the Bragg-Williams approximation: 
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v�� = '() ��� 2�%2� + � p��� 2�2�2� + �� 2�%2� q� + � ���´ 2�2�´2���´�´��
�                                        (S25) 

Here, we only consider interactions between solutes, and �z is the exchange parameter of the 
respective interaction.16 Note that the total particle number 2� = 2� + 2� + � 2��                                                                                                                (S26) 

is different from 2��� defined in the main text, as 2� counts the micelles rather than the detergent 
molecules in micelles.  

Eq. (9) requires the computation of the partial derivative �v�2� = �vw�2� + �v�x�2� + �v���2�                                                                                                      (S27) 

We have �vw�2� = �a��                                                                                                                                      (S28) 

�v�x�2� = −'() �2� 2���� ��2��� + 2� 2���� ��2��� + � 2�´ 2�´��´� ��2�´��´�´�´��
 

                             + ln | �2���} + 2� 2���� ] ��2��� − �2�%��^~ 

             = −'() ��2� + 2� + � 2�´�´�´��
� ��� + ln | �2���} + 2�� ]�� − �2�^~ 

             = −'() {2� ��� − ln |2���� } − 1~ = '() {1 + ln |2���� } − 2� ��� ~                     (S29) 

and �v���2� = '() �−�� 2�%2�% − � p���´ 2�2�´2�% + ��´ 2�%́2�%q�´ + ��� 2�2� + 2�� 2�2�  

                         − � ��´�´´ 2�´2�´´2�%�´�´´�´´��´
+ � ���´ 2�´2��´�´��

� 

           = '() �12� ����2� + 2��2� + � ���´2�´�´�´��
� 

                         − 12�% ���2�% + �����´2�2�´ + ��´2�%́ ��´ + � ��´�´´2�´2�´´�´�´´�´´��´
��                  (S30) 

These equations are still quite general. To make progress in understanding, we simplify further by 
making two approximations: 
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1) We adopt a mass action model, i. e. we assume that only one type of detergent micelle with 
aggregation number , exists. This is the same assumption that we made in the main text within 
the ideal solution model. Thus, we have only � = 1 and � = ,. 

2) We neglect interactions between micelles, between detergent monomers as well as between 
detergent monomers and micelles. Note that v�� does not account for micelle formation, but 
only for the interaction between separated solutes. Thus, we consider only such interactions 
between the co-solute and detergent monomers as well as micelles and between co-solute 
molecules. 

With these approximations, we obtain from eq. (9) together with eqs. (S27) to (S30): a�� + '() {1 + ln |2���� } − 2� ��� + ���2�2� − 12�% (��2�% + ���2�2� + ��h2�2h)~ = ah�  

   + '(), {1 + ln |2h�h� } − 2� �h� + ��h2�2� − 12�% (��2�% + ���2�2� + ��h2�2h)~       (S31) 

Eq. (S31) can be rearranged to give 

− ,(ah� − a��)'() = ln | 2h�h(2���)h �h��} + 2�� (,�� − �h) + 12� (��h2� − ,���2�) 

                                                   + 12�% (, − 1)(��2�% + ���2�2� + ��h2�2h − 2�%)           (S32) 

This equation can be further simplified by assuming that detergent and co-solute are diluted enough 
so that terms in the order of 2z% 2�%⁄  can be neglected. Considering the definition in eq. (12), we 
thus obtain: 

−,��� = ln | 2h�h(2���)h �h��} + 2�� (,�� − �h) + (1 − ,) + 2�2� (��h − ,���)    (S33)  
The first three terms on the right-hand side of eq. (S33) originate from the consideration of 
excluded volume effects in the entropy of mixing, while the last term is due to interactions between 
detergent and co-solute. Note that the latter interaction does not include an attachment of co-solute 
molecules to either detergent monomers or micelles. Further, eq. (S33) is not a model for ���, but 
rather describes the relation of ��� to the various particle numbers as does eq. (13) of the main text 
in the ideal solution model. 

To find the connection to the mole fractions �z defined in the main text, we make another 
simplifying assumption discussed by Hildebrand:15 We assume that the free volumes �z are 
proportional to the molar volumes Wz with a species-independent proportionality constant. 
(Hildebrand actually discussed the molal volumes.15) This approximation implies that the volume 
fraction �z of species � (with mole number +z and molarity �z) is given by �z = 2z�z� = 2zvz_ = +zWz_ = �zWz = ����Wz�z                                                                          (S34)  
Recall that for micelles, we defined �� as the mole fraction of detergent in micelles rather than as 
the mole fraction of micelles. Thus, eq. (6) of the main text implies, that in the particular case � = ,, we have �h = ����Wh �h,                                                                                                                            (S35)  
Here, �h and Wh are the volume fraction and molar volume, respectively, of micelles with 
aggregation number ,. Eq. (S34) also implies that �z� = vz_ = Wz2�_                                                                                                                             (S36)  
where 2� is Avogadro´s number, so that 
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2� �z� = 2�Wz2�_ ≈ ����Wz                                                                                                                  (S37)  
Here, we neglected the contribution of detergent to 2� in the last step, so that 2� ≈ 2��� and ���� ≈2� (2�_)⁄ . Note that this approximation was already applied in Section 2.6, where the contribution 
of detergent to ���� ≈ 2��� (2�_)⁄  was neglected. Then, 2�� (,�� − �h) ≈ ����(,W� − Wh) = ,�����                                                                      (S38)  
To have a short notation, we introduced the quantity � = 1, (,W� − Wh) = W� − Wh,                                                                                                 (S39)  
which represents the volume difference between , detergent monomers in solution and a micelle 
with aggregation number , per detergent molecule in the micelle. It may be argued that this 
quantity is practically zero, but � = 0 would be an approximation. Further, with the neglect of 
detergent contributions to 2�, we obtain for the co-solute 2� 2�⁄ ≈ ��. Similar to eq. (S39), we 
introduce the quantity � = 1, (��h − ,���) = ��h, − ���                                                                                              (S40)  
representing the difference in interaction of the co-solute with a micelle with aggregation number , 
and with , detergent monomers per detergent molecule in the micelle. Then, eq. (S33) becomes: 

−,��� = ln ��h��h� + (1 − ,) + ,(����� + ���) 

                 = ln � �h,��h� + ln | ����Wh(����W�)h} + (1 − ,) + ,(����� + ���)                          (S41)  
We now see clearly that with respect to the ideal solution model represented by eq. (13), we have 
three additional terms. While (1 − ,) is known, the other two of these additional terms remain to 
be quantified. 

If � ≈ 0, we may use Wh ≈ ,W� and compute Wh according to Wh = 2�vh = 2� 43 �(7 + [)(8 + [)%                                                                                  (S42)  
where vh is now approximated by the volume of a micelle with the parameters 7 and 8 describing 
the spheroidal core and [ being the thickness of the head group layer (for the volume of an oblate 
spheroid, see eq. (16) in ref. 1). Values for Wh, Ψ = ln | ����Wh(����W�)h} = ln |����Wh,h(����Wh)h} = (1 − ,) ln ����Wh¡ + , ln ,                        (S43)  
and 

¢ = 1, (Ψ + 1 − ,) = Ψ, + 1, − 1                                                                                        (S44)  
are compiled in Table 6. 

It follows that in the non-ideal solution model, eq. (13) of the main text is replaced by �h = ,��hi�h(jklm£¤£�¥¦¥§£¨m©)                                                                                           (S45)  
with the various contributions to non-ideal behavior added to ���, while eq. (21) becomes 

��� = −¢ − ����� − ��� + , − 1, ln ���� + 1, ln � ,(2,% − ,)h(, − 2)(2,% − 2)h���           (S46)  
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Table 6: Computation of the quantity ¢ defined in eq. (S44) for alkyl maltosides with + carbon 
atoms in the alkyl chain, using eq. (S42) with [ = 6.15 Å.6 

+ 8 9 10 11 12 7 / Å 10.45 11.35 12.25 13.15 14.05 

8 / Å 18.25 20.88 23.50 26.13 28.75 (7 + [) / Å 16.60 17.50 18.40 19.30 20.20 (8 + [) / Å 24.40 27.03 29.65 32.28 34.90 

, 47 62 85 106 140 

, ln , 180.96 255.88 377.63 494.32 691.83 

Wh M��⁄  24.93 32.25 40.80 50.73 62.06 

����Wh for ���� =54.65 M 
1362.42 1762.46 2229.72 2772.39 3391.58 

����Wh for ���� =55.32 M 
1379.13 1784.07 2257.06 2806.38 3433.16 

Ψ for ���� = 54.65 M −151.02 −200.06 −269.98 −338.06 −438.11 

Ψ for ���� = 55.32 M −151.58 −200.81 −271.00 −339.34 −439.80 

¢ for ���� = 54.65 M −4.19 −4.21 −4.16 −4.18 −4.12 

¢ for ���� = 55.32 M −4.20 −4.22 −4.18 −4.19 −4.13 
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