Supplementary Data

Synthesis of tetrazoles catalyzed by a new and recoverable nanocatalyst of cobalt on modified boehmite NPs with 1,3-bis(pyridin-3-ylmethyl)thiourea

Arida Jabbari ${ }^{*}$, , Parisa Moradi ${ }^{\text {b }}$, Bahman Tahmasbi ${ }^{\text {b }}$
${ }^{a}$ Department of Chemistry, Qeshm Branch, Islamic Azad University, Qeshm, Iran.
${ }^{b}$ Department of Chemistry, Faculty of Science, Ilam University, P.O. Box 69315516, Ilam, Iran.

Abstract

At first part of this work, boehmite nanoparticles (BNPs) were synthesized from aqueous solutions of NaOH and $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$. Then, BNPs surface was modified using 3choloropropyltrimtoxysilane (CPTMS) and then 1,3-bis(pyridin-3-ylmethyl)thiourea ((PYT) $)_{2}$) was anchored on the surface of modified BNPs (CPTMS@BNPs). In the final step, a complex of cobalt stabilized on its surface (Co-(PYT) 2_{2} @BNPs). The final obtained nanoparticles were characterized by FTIR spectra, TGA analysis, SEM imaging, WDX analysis, EDS analysis, and XRD pattern. At second part, Co-(PYT) 2_{2} @ BNPs used as a highly efficient, retrievable, stable, and organic-inorganic hybrid nanocatalyst for homoselective formation of organic heterocyclic compounds such as tetrazole derivatives. The homoselectivity of Co-(PYT) $)_{2}$ @BNPs was confirmed in the $[3+2]$ cycloaddition of phthalonitrile and sodium azide $\left(\mathrm{NaN}_{3}\right)$. Co-(PYT $)_{2} @$ BNPs as a novel nanocatalyst is stable and it has heterogeneity nature nanocatalyst; therefore, it can recovered and reused again for several consecutively runs without any re-activation.

Keywords: Boehmite nanoparticles; Heterogeneous catalyst; Homoselective nanocatalyst, Heterocyclic tetrazoles, Cobalt complex.

[^0]

1,3-bis(pyridin-3-ylmethyl)thiourea ((PYT) $)_{2}$: ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta_{\mathrm{H}}=5.50(\mathrm{~s}, 2 \mathrm{H}), 8.46-$ $8.44(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 8.22(\mathrm{br}, 2 \mathrm{H}), 7.69-7.66(\mathrm{~d}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.33$ (d of d, $J=8 \mathrm{~Hz}, J=4 \mathrm{~Hz}$, 2H), 4.69 ($\mathrm{s}, 4 \mathrm{H}$) ppm.

3

1,3-bis(pyridin-3-ylmethyl)thiourea ((PYT) $)_{2}$: ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta_{\mathrm{H}}=5.50(\mathrm{~s}, 2 \mathrm{H})$, $8.46-8.44(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 8.22$ (br, 2H), 7.69-7.66 (d, $J=12 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37-7.33 (d of d, $J=8 \mathrm{~Hz}, J=4$ $\mathrm{Hz}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm}$.
(

3
1,3-bis(pyridin-3-ylmethyl)thiourea ((PYT) $)_{2}$): IR (KBr$)_{\mathrm{cm}^{-1}}$: 3272, 3184, 3000, 2923, 2853, 2359, 1913, 1529, 1473, 1422, 1298, 1237, 1193, 1101, ,1027, 973, 918, 805, 770, 708, 616, 535.

5-phenyl-1H-tetrazole: ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta_{\mathrm{H}}=16.89$ (br, 1H), 8.06-8.03 (d of d, $J=8 \mathrm{~Hz}$, $J=4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.63-7.58 (m, 3H) ppm.

5-(3-nitrophenyl)-1H-tetrazole: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta_{\mathrm{H}}=17.39$ (br, 1H), 8.85-84 (t, $J=4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.50-8.47(\mathrm{~d}$ of $\mathrm{t}, J=12 \mathrm{~Hz}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 8.45-8.41(\mathrm{~d}$ of $\mathrm{q}, J(\mathrm{~d})=8 \mathrm{~Hz}, J(\mathrm{q})=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-$ $7.89(\mathrm{t}, J=12 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

5-(3-nitrophenyl)-1H-tetrazole: ${ }^{13} \mathrm{C}$ NMR (400 MHz , DMSO-d6): $\delta_{\mathrm{C}}=153.9,147.1,131.9,130.0,125.2$, 124.3, 120.3 ppm .

5-(3-nitrophenyl)-1H-tetrazole: IR (KBr) $\mathrm{cm}^{-1}: 3439,3092,2923,2856,2700,1734,1620,1527,1464$, 1374, 1161, 1070, 991, 864, 816, 728, 665, 449.

2-(1H-tetrazol-5-yl)phenol: ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta_{\mathrm{H}}=7.99-7.96$ (d of d, $J=12 \mathrm{~Hz}, J=4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42-7.37(\mathrm{t}$ of d, $J=12 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.04(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.96(\mathrm{t}, J=12 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

2-(1H-tetrazol-5-yl)phenol: ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta_{\mathrm{H}}=7.99-7.96$ (d of d, $J=12 \mathrm{~Hz}, J=4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42-7.37(\mathrm{t}$ of d, $J=12 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.04(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.96(\mathrm{t}, J=12 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (400 MHz, DMSO-d6): $\delta_{\mathrm{C}}=155.3,151.8,132.5,128.9,119.7,116.3,110.6 \mathrm{ppm}$.

2-(1H-tetrazol-5-yl)phenol: ${ }^{13} \mathrm{C}$ NMR (400 MHz , DMSO-d6): $\delta_{\mathrm{C}}=155.3,151.8,132.5,128.9,119.7$, 116.3, 110.6 ppm.

2-(1H-tetrazol-5-yl)phenol: IR (KBr) $\mathrm{cm}^{-1}: 3253,3058,2941,2708,2565,1892,1735,1610,1546,1476$, 1393, 1358, 1294, 1230, 1150, 1114, 1067, 808, 742, 681, 538, 465.

[^0]: * Address correspondence to A. Jabbari, Department of Chemistry, Qeshm Branch, Islamic Azad University, Qeshm, Iran. E-mail address: arida_jabbari@yahoo.com

