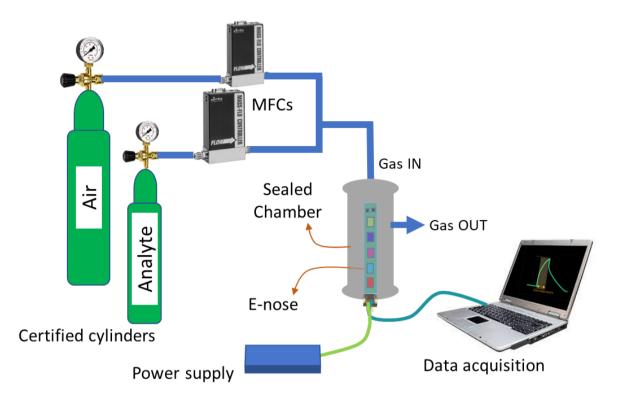
SUPPORTING INFORMATION to:

Targeting biomarkers in the gas phase through a chemoresistive electronic nose based on graphene functionalized with metal phthalocyanines

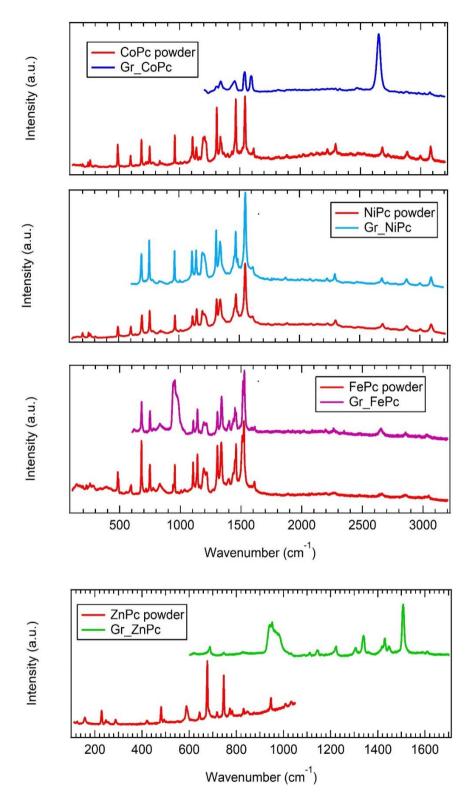
Sonia Freddi,^{a,b} Camilla Marzuoli,^{a,+} Stefania Pagliara,^a Giovanni Drera,^a and Luigi Sangaletti ^a

^a Surface Science and Spectroscopy lab @ I-Lamp, Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Via della Garzetta 48, 25123 Brescia (Italy)
^b Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Leuven (Belgium)
[†] Current affiliation: Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli 70/3, 20133 Milano (Italy) – Department of Physics, Politecnico di Milano, P.zza L. Da Vinci 32, 20133 Milano (Italy)

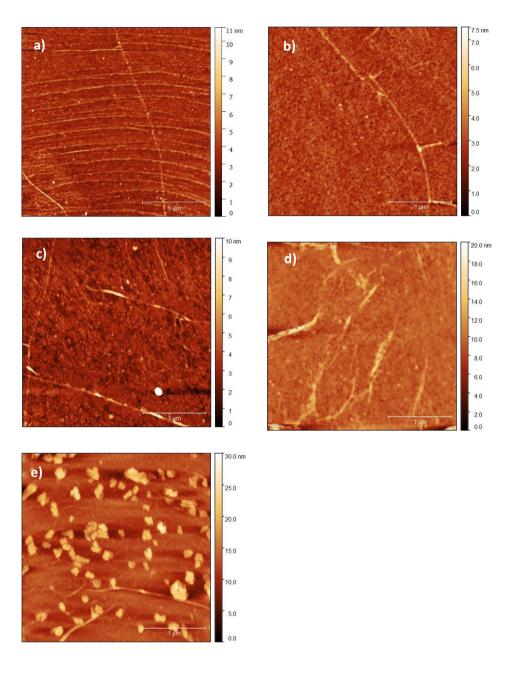

CONTENT:

1. Gas exposures set up (Figure S1)

2. Comparison between Raman spectra collected on phthalocyanine powder and on the developed samples (Figure S2)


- 3. AFM characterization (Figure S3)
- 4. Batch-to-batch reproducibility (Table S.I, Table S.II, Table S.III)
- 5. Exposures to low ammonia concentration and recovery time analysis (Figure S4, Table S.IV)
- 6. Freundlich fitting parameters and detection limit evaluation (Table S.V, Table S.VI)
- 7. Benchmarking for sensitivity and detection limit (Table S.VII)
- 8. Ammonia exposures for CoPc layer (Figure S5)
- 9. Raman maps on Gr_CoPC (Figure S6)
- 10. Details on the $(\Delta R/R_0)_{\text{pos}}$ and $(\Delta R/R_0)_{\text{neg}}$ evaluation
- 11. Concentration range of all selected target gas molecules (Table S.VIII)

1. Gas exposures set up


Figure S1: schematic set up for the gas exposures. The system comprises a homemade steal sealed chamber, connected to 2 mass flow controllers (MFCs), a PC for data acquisition, a certified cylinder filled with air and certified cylinders containing the target gas molecules (S.I.A.D Spa). The MCF connected to the air cylinder has a maximum flow of 500 sccm, while the max flow of the MFC connected to the analyte cylinders is 200 sccm. A power supply is connected to the platform hosting the developed samples and mounted inside the chamber.

<u>2. Comparison between Raman spectra collected on phthalocyanine powder and on the developed samples</u>

Figure S2: Comparison between the Raman spectra of the phthalocyanine powder (red spectra) and the Raman spectra of graphene on Si/Si_3N_4 functionalized with the phthalocyanine. Of note, regarding ZnPc both spectra span a different range than the other samples: indeed, the ZnPc powder spectrum range is cut at 1050 cm⁻¹ while the Gr_ZnPc one is cut at 1660 cm⁻¹, due to luminescence.

3. AFM characterization

Figure S3: AFM images of: pristine graphene (a), and graphene functionalized with CoPc (b), FePc (c), NiPc (d), ZnPc (e) layers.

4. Batch-to-batch reproducibility

Table S.I: Baseline resistance of the graphene layers selected to develop the sensors, measured before the functionalization. The values are comparable, indicating a sample-to-sample baseline resistance reproducibility.

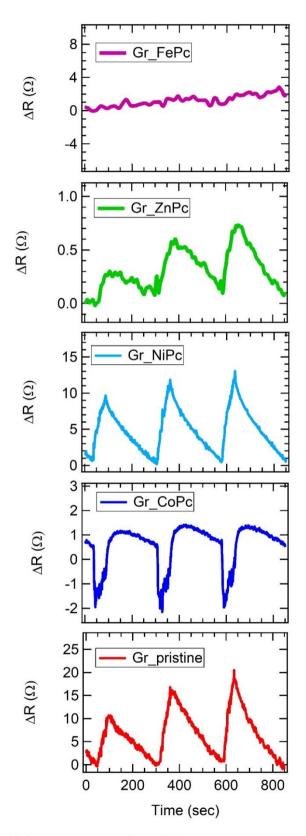

Sensor	Baseline resistance (kΩ)
Gr_CoPc	2.11 ± 0.01
Gr_FePc	2.05 ± 0.01
Gr_NiPc	2.12 ± 0.01
Gr_ZnPc	2.15 ± 0.01
Gr_pristine	2.06 ± 0.01

Table S.II: Baseline resistance of the graphene layers measured before the functionalization (R_0 _before) and after the functionalization (R_0 _after) and value of the roughness, evaluated on several AFM images, for the Gr_CoPc_A, B and C samples prepared for the reproducibility tests. The values are always comparable to the ones registered for the sample used in the e-nose (Gr_CoPc), proving a batch-to-batch reproducibility.

	Gr_CoPc	Gr_CoPc_A	Gr_CoPc_B	Gr_CoPc_C
R ₀ _before (kΩ)	2.11 ± 0.01	2.12 ± 0.01	2.05 ± 0.01	2.15 ± 0.01
R ₀ _after (kΩ)	0.738 ± 0.001	0.742 ± 0.001	0.739 ± 0.001	0.742 ± 0.001
Roughness (pm)	0.31 ± 0.12	0.28 ± 0.08	0.27 ± 0.09	0.30 ± 0.10

Table S.III: Baseline resistance of the graphene layers measured before the functionalization (R_0 _before) and after the functionalization (R_0 _after) and value of the roughness, evaluated on several AFM images, for the Gr_NiPc_A, B and C samples prepared for the reproducibility tests. The values are always comparable to the ones registered for the sample used in the e-nose (Gr_NiPc), proving a batch-to-batch reproducibility.

	Gr_NiPc	Gr_NiPc_A	Gr_NiPc_B	Gr_NiPc_C
R ₀ _before (kΩ)	2.12 ± 0.01	2.14 ± 0.01	2.08 ± 0.01	2.13 ± 0.01
R ₀ _after (kΩ)	1.50 ± 0.01	1.51 ± 0.01	1.48 ± 0.01	1.52 ± 0.01
Roughness (pm)	0.48 ± 0.17	0.39 ± 0.12	0.34 ± 0.11	0.44 ± 0.16

Figure S4: Variation of the resistance value of the sensor array to 1.4 ppm, 2.5 ppm and 3.7 ppm ammonia exposures. Gr_FePc does not show a response, in agreement with the evaluated detection limit of 8 ppm. All the other sensors respond and then completely recover after each expsure.

Table S.IV: Recovery time as function of ammonia concentration for all the prepared sensors. Recovery time is here defined as the time required by the resistance value to fall by 80% with respect to the value achieved during the exposure. Data evaluated from the exposures presented in Figure S4.

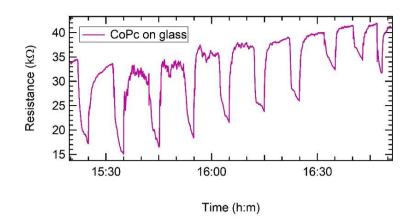
Sample	1.4 ppm	2.5 ppm	3.7 ppm
Gr_pristine	150s	155s	140s
Gr_NiPc	135s	140s	140s
Gr_CoPc	95s	100s	100s
Gr_ZnPc	140s	155s	140s

6. Freundlich fitting parameters and detection limit evaluation

Table S.V: fitting parameter of the calibration curves plotted in Figure 3 of the main text.

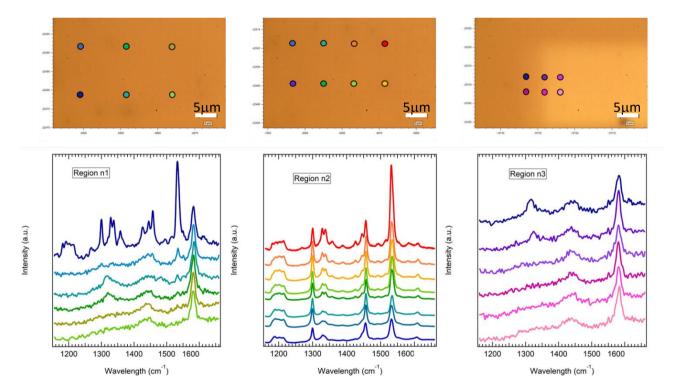
Sensor	Α	pow	y ₀ (Ω)
Gr_FePc	-	-	-
Gr_NiPc	0.004 ± 0.001	0.44 ± 0.01	-0.00018 ± 0.00002
Gr_ZnPc	0.0004 ± 0.0001	0.54 ± 0.02	-0.00005 ± 0.00002
Gr_pristine	0.006 ± 0.002	0.42 ± 0.06	-0.0005±0.0001

Table S.VI: detection limit for ammonia exposure evaluated according to the formula reported in ref. [71] of the main text: $3[NH_3]/((R-R_0)/\sigma)$.


Sensor	σ (Ω)	dl (ppm)
Gr_FePc	-	8,00
Gr_NiPc	0.096 ± 0.002	0,05
Gr_ZnPc	0.04 ± 0.01	0,05
Gr_pristine	0.354± 0.008	0,17
Gr_CoPc	0.0050 ± 0.0003	0,03

7. Benchmarking for sensitivity and detection limit

Table S.VII: Benchmarking for sensitivity (defined as: $(\Delta R/R_0*100)/[NH_3]$) and detection limit. For literature works [Ref 28, 29, 73-84 in the main text] sensitivity is reported for the lowest concentration tested in each paper and for the best performing sensor. Of note: only articles clearly reporting gas concentration and sensor response/sensitivity have been taken into account for this benchmarking.


Son con trino	Concentration	Sensitivity	Detection limit	Reference
Sensor type	(ppm)	(%ppm ⁻¹)	(ppm)	(main text)
Gr_pristine	0.5	0.80	0.17	Present work
Gr_NiPc	0.5	0.64	0.05	Present work
Gr_ZnPc	0.5	0.03	0.05	Present work
Gr_CoPc	0.5	-0.24	0.03	Present work
Gr_FePc	12	0.03	8.0	Present work
Gr/AuNPs	15	0.17	-	73
Gr	2	2.05	0.5	74
Gr/PANI	20	0.18	1	75
TiO2@PPy-GN	50	2.04	1	76
B-doped Gr	1	0.04	0.6x10 ⁻²	77
Gr	75	0.04	-	78
Gr	100	0.05	-	79
B-doped Gr	32	0.28	-	80
Gr_NBD	0.05	11.78	-	28
Gr-TCN	0.86	6.33	4.2x10 ⁻³	29
CuPc/rGO	0.4	4.5	-	81
NiPc/rGO	100	0.09	0.4	82
ZnPc:rGO	10	0.003	-	83
cpoPcCo/rGO	100	0.42	3.7x10 ⁻³	84

8. Ammonia exposures for CoPc layer

Figure S5: Response of a thick CoPc film on glass substrate upon exposures to several differet ammonia concentration. An n-type doping of the GrPc layer itself is assessed.

9. Raman maps on Gr CoPc

Figure S6: Top side: optical image collected with the sample; the spots where the Raman spectrum has been collected (with a map procedure) are enlighted. Bottom side: corresponding Raman spectra. It is clear that the layer is not completely covered by the phthalocyanine molecules. Indeed, in some spots of region 1 and all spots of region 3 only peaks arcribable to graphene could be found. In region 2 all the spectra report the presence of the phthalocyanine molecules on the graphene layer. Different relative intensity between Gr and Pc peaks implies a different thickness coverage.

<u>10. Details on the $(\Delta R/R_0)_{pos}$ and $(\Delta R/R_0)_{neg}$ evaluation (referred to Figure 5 main text)</u>

In order to estimate the $(\Delta R/R_0)_{pos}$ and $(\Delta R/R_0)_{neg}$ values reported in Figure 5 of the main text, as schematically illustrated in Figure 5-a, we proceed as follow:

- $(\Delta R/R_0)_{neg}$: the R₀ value is the resistance value before the gas exposure, while ΔR =R- R₀ is evaluated considering the difference between the lowest negative value R achieved by the resistance during the exposure and R₀;
- $(\Delta R/R_0)_{pos}$: the R_0 value represents the lowest negative value achieved by the resistance during the exposure, while $\Delta R=R-R_0$ is evaluated considering the difference between the highest positive value R achieved by the resistance during the exposure and R_0 .

<u>11. Concentration range of all selected target gas molecules</u>

Target gas	Concentration range (ppm)
Ammonia	0-13.5
Acetone	0-40
Ethanol	0-37
2-propanol	0-40
Benzene	0-1
Sodium hypochlorite	0-0.5
Hydrogen sulfide	0-2.5
Water	0-1000

Table S.VIII: Concentration range of the selected target gas molecules used for the PCA analysis.