Acid catalyzed one-pot approach towards the synthesis of curcuminoids systems: unsymmetrical diarylidene cycloalkanones, exploration of their single crystals, optical and nonlinear optical properties

Akbar Ali,¹ Zia Ud Din,² Muhammad Ibrahim,*³ Muhammad Ashfaq,*⁴ Shabbir Muhammad,⁵ Dania Gull,¹

Muhammad Nawaz Tahir,⁴ Edson Rodrigues-Filho,² Abdullah G. Al-Sehemi,⁵ Muhammad Suleman⁶

¹Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad, Pakistan.

²LaBioMMi, Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos, SP 13.565-905, Brazil

³Department of Applied Chemistry, Government College University Faisalabad, Pakistan.

⁴Department of Physics, University of Sargodha, Sargodha, Pakistan

⁵Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia

⁶Department of Chemistry, Riphah International University Faisalabad Campus, Pakistan

* Corresponding authors E-mail addresses:

(Dr. Muhammad Ibrahim) ibrahimchem@gmail.com

(Muhammad Ashfaq) ashfaq.muhammad@uos.edu.pk;muhammadashfaq1400@gmail.com

Selected bond lengths in BNTP		Selected bond lengths in BDB C	
01-N1	1.2209 (18)	O1-C2	1.391 (3)
O2-N1	1.2156 (18)	O1-C7	1.430 (3)
N1-C4	1.4666 (18)	O2-C3	1.373 (3)
O3-C9	1.2185 (18)	O2-C8	1.424 (3)
O4-C11	1.4197 (18)	O3-C11	1.232 (3)
O4-C12	1.4204 (17)	-	-
Selected bond	angles in BNTP	Selected bond a	angles in BDBC
01-N1-O2	123.58 (14)	C2-O1-C7	113.19 (18)
O1-N1-C4	118.31 (14)	C3-O2-C8	116.5 (2)
O2-N1-C4	118.10 (13)	C3-C2-O1	118.8 (2)
C8-C9-O3	120.85 (13)	C4-C3-O2	124.8 (2)
C11-O4-C12	110.80 (12)	C10-C11-O3	125.3 (2)

Table: S1 Selected bond lengths and bond angles in BNTP-BDBC.

Table S2 Enrichment ratio for the pair of interatomic contacts in **BNTP**. The enrichment ratio is not calculated for the contacts having random contacts less than 0.9% as these contacts have negligible contribution in the crystal packing.

Contact %	Atom	Н	С	N	0
	Н	34.4	18.7	0.4	32.5
	С	18.7	8.1	1	3.3
	Ν	0.4	1		1
	0	32.5	3.3	1	0.6
Surface%		60.2	19.6	1.2	19
	Atom	Η	С	Ν	0
	Н	36.24			
Random Contacts %	С	23.60	3.84		
	Ν	1.44	0.47	0.01	
	0	22.88	7.45	0.46	3.61
Enrichment ratio	Atom	Н	C	N	0

H	0.95		
С	0.79	2.11	
Ν	0.28		
0	1.42	0.44	0.17

Table S3 Enrichment ratio for the pair of interatomic contacts in **BNTP**. The enrichment ratio is not calculated for the contacts having random contacts less than 0.9% as these contacts have negligible contribution in the crystal packing.

	Atom	Н	С	0
Contract 0/	Н	52.6	28.3	14.6
Contact 70	С	28.3	3	1.5
	0	14.6	1.5	
Surface%		74.05	17.9	8.05
	Atom	Н	С	0
Dandom Contacts %	Н	54.83		
Kanuom Contacts 70	С	26.51	3.20	
	0	11.92	2.88	0.65
	Atom	Η	С	0
Enrichment ratio	Н	0.96		
	С	1.07	0.94	
	0	1.22	0.52	

Fig. S1 ¹H and ¹³C NMR data of the compound BNTP.

Fig.S2 ¹H and ¹³C NMR data of the compound BDBC.

Fig. S3 UV spectrum of the compound BNTP.

Fig. S4 UV spectrum of the compound BDBC.

IR-Prestige21

Functional Groups IR values

- 1. 3053 cm⁻¹ (=C-H)
- 2. 2833 cm⁻¹, 2924 cm⁻¹ (=C-H) Antisymmetry, Symmetry
- 3. 1670 cm⁻¹ (C=O)
- 4. 1612 cm⁻¹ (C=C)
- 5. 1492 cm⁻¹ (-CH₂) 6. 1444 cm⁻¹ (-NO₂)
- 7. 1265 cm⁻¹ (C-O)

Fig. S5 IR spectrum of the compound BNTP.

IR-Prestige21

Fig. S6 IR spectrum of the compound BDBC.

checkCIF/PLATON report of BNTP.

Structure factors have been supplied for datablock(s) A1K7A11

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: BNTP

Bond precision:	C-C = 0.0021 A	Wavelength	=0.71073
Cell:	a=7.5877(4) alpha=90	b=7.2192(4) beta=90.507(1)	c=28.0023(14) gamma=90
Temperature:	296 K		-

	Calculated	Reported	
Volume	1533.83(14)	1533.83(14)	
Space group	P 21/n	P 21/n	
Hall group	-P 2yn	-P 2yn	
Moiety formula	C19 H15 N O4	C19 H15 N O4	
Sum formula	C19 H15 N O4	C19 H15 N O4	
Mr	321.32	321.32	
Dx,g cm-3	1.391	1.391	
Ζ	4	4	
Mu (mm-1)	0.098	0.098	
F000	672.0	672.0	
F000′	672.35		
h,k,lmax	9,9,35	9,9,35	
Nref	3262	3262	
Tmin,Tmax	0.963,0.982	0.983,0.988	
Tmin'	0.963		
Correction metho AbsCorr = MULTI-	d= # Reported T Limits: Tmir SCAN	=0.983 Tmax=0.988	
Data completenes	s= 1.000 Theta(ma	x)= 26.729	
R(reflections)=	0.0413(2850)	wR2(reflect	(ions) =
S = 1.029	Npar= 217	0.1093(320	' -

The following ALERTS were generated. Each ALERT has the format

test-name ALERT alert-type alert-level.

Click on the hyperlinks for more details of the test.

Alert level G

PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.15 InfoPLAT992_ALERT_5_G Repd & Actual _reflns_number_gt Values Differ by2 Check

0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
0 ALERT level C = Check. Ensure it is not caused by an omission or oversight
2 ALERT level G = General information/check it is not something unexpected
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
0 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/02/2022; check.def file version of 19/02/2022

Datablock A1K7A11 - ellipsoid plot

checkCIF/PLATON report of BDBC.

Structure factors have been supplied for datablock(s) A1K10A10

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: BDBC

Bond precision:	C-C = 0.0034 A	Wavelength=	=0.71073
Cell:	a=16.154(2) alpha=90	b=6.9813(10) beta=90	c=28.997(4) gamma=90
Temperature:	150 K		
	Calculated	Reported	
Volume	3270.2(8)	3270.2(8)	
Space group	Рbса	РЬса	
Hall group	-P 2ac 2ab	-P 2ac 2al	C
Moiety formula	С21 Н20 ОЗ	C21 H20 O3	3
Sum formula	С21 Н20 ОЗ	C21 H20 O3	3
Mr	320.37	320.37	
Dx,g cm-3	1.301	1.301	
Z	8	8	
Mu (mm-1)	0.086	0.086	
F000	1360.0	1360.0	
F000′	1360.65		
h,k,lmax	19,8,34	19,8,34	
Nref	2991	2992	
Tmin,Tmax	0.969,0.983	0.983,0.98	88
Tmin'	0.969		
Correction metho AbsCorr = MULTI-	od= # Reported T Lin -SCAN	mits: Tmin=0.983 Tma	ax=0.988
	1 000		7
Data completenes	SS= 1.000	Theta(max) = 25.34	
R(reflections)=	0.0547(2623)		<pre>wR2(reflections) = 0.1161(.2002)</pre>
S = 1.159	Npar= 21	19	0.1101(2992)

The following ALERTS were generated. Each ALERT has the format

test-name ALERT alert-type alert-level.

Click on the hyperlinks for more details of the test.

Alert level C

PLAT906 ALERT 3 C Large K Value in the Analysis of Variance 7.164 Check

Alert level G

PLAT978 ALERT 2 G Number C-C Bonds with Positive Residual Density. 4 Info

```
0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
1 ALERT level C = Check. Ensure it is not caused by an omission or oversight
1 ALERT level G = General information/check it is not something unexpected
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
1 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
```

```
0 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/02/2022; check.def file version of 19/02/2022

Datablock A1K10A10 - ellipsoid plot

CIF of BNTP without HKL data

data_global

PROCESSING SUMMARY (IUCr Office Use only)

_publ_contact_author

;

Muhammad Nawaz Tahir

University of Sargodha

Department of Physics

Sargodha

Pakistan

;

_publ_contact_author_phone	'0092 48 92 30 914'
_publ_contact_author_fax	'0092 48 32 22 121'
_publ_contact_author_email	'dmntahir_uos@yahoo.com'
_publ_requested_journal	
_journal_date_recd_electronic	?

_journal_date_to_coeditor ?

_journal_date_from_coeditor ?

_journal_date_accepted ?

- _journal_date_printers_first ?
- _journal_date_printers_final ?
- _journal_date_proofs_out ?
- _journal_date_proofs_in ?
- _journal_coeditor_name ?
- _journal_coeditor_code ?

```
_journal_paper_category ?
_journal_coeditor_notes
;
;
;
journal_techeditor_code ?
_iucr_compatibility_tag ?
```

_journal_techeditor_notes

;

;

_journal_coden_ASTM	?
_journal_name_full	?
_journal_year	?
_journal_volume	?
_journal_issue	?
_journal_page_first	?
_journal_page_last	?

_journal_suppl_publ_number ?

_journal_suppl_publ_pages ?

#-----

loop_

_publ_author_name

_publ_author_address

'Muhammad Ashfaq'

;

Department of Physics

University of Sargodha

Sargodha

Pakistan

;

'Muhammad Nawaz Tahir'

;

Department of Physics

University of Sargodha

Sargodha

Pakistan

;

'Aleksey Kuznetsov'

;

Departamento deQuímica, Campus Santiago Vitacura

Universidad Tecnica Federico Santa María

Av. Santa María 6400 Vitacura

Chile

;

'Akbar Ali'

;

Department of Chemistry

University of Sargodha

Sargodha-40100

Pakistan

;

_audit_creation_date ?

_audit_creation_method ?

TEXT

_publ_section_title

;

(3E,5E)-3-benzylidene-5-(4-nitrobenzylidene)dihydro-2H-pyran-4(3H)-one

;

_publ_section_abstract

- ;
- ;
- _publ_section_comment

; ;

_publ_section_exptl_refinement

; ;

_publ_section_exptl_prep

; ;

_publ_section_related_literature

; ;

_publ_section_references

;

Bruker (2007). <i>SADABS</i>. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). <i>APEX2</i> and <i>SAINT</i>. Bruker AXS Inc.,

Madison, Wisconsin, USA.

Farrugia, L. J. (2012). <i>J. Appl. Cryst.</i> 45, 849--854.

Sheldrick, G. M. (2014). <i>Acta Cryst.</i> A70, C1437.

Sheldrick, G. M. (2015). <i>Acta Cryst.</i> C71, 3--8.

Spek, A. L. (2009). <i>Acta Cryst.</i> D65, 148--155.

;

_publ_section_figure_captions

;

;

_publ_section_acknowledgements

;

;

data_A1K7A11

_audit_creation_method 'SHELXL-2019/2'

_shelx_SHELXL_version_number '2019/2'

_chemical_name_common ?

_chemical_absolute_configuration '.'

_chemical_name_systematic

;

(3E,5E)-3-benzylidene-5-(4-nitrobenzylidene)dihydro-2H-pyran-4(3H)-one

;

_chemical_formula_moiety 'C19 H15 N O4'

_chemical_formula_sum	'C19 H15 N O4'
_chemical_formula_iupac	'C19 H15 N O4'
_chemical_formula_weight	321.32

loop_

_atom_type_symbol

_atom_type_description

_atom_type_scat_dispersion_real

_atom_type_scat_dispersion_imag

_atom_type_scat_source

'C' 'C' 0.0033 0.0016

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'H' 'H' 0.0000 0.0000

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'N' 'N' 0.0061 0.0033

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'O' 'O' 0.0106 0.0060

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_space_group_crystal_system monoclinic _space_group_IT_number 14 _space_group_name_H-M_alt 'P 21/n' _space_group_name_Hall '-P 2yn'

_shelx_space_group_comment

The symmetry employed for this shelxl refinement is uniquely defined by the following loop, which should always be used as a source of symmetry information in preference to the above space-group names. They are only intended as comments.

;

loop_

_space_group_symop_operation_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2'

_cell_length_a	7.5877(4)	
_cell_length_b	7.2192(4)	
_cell_length_c	28.0023(14	4)
_cell_angle_alpha	90	
_cell_angle_beta	90.5070(10)
_cell_angle_gamma	90	
_cell_volume	1533.83(14	4)
_cell_formula_units_Z	4	
_cell_measurement_ref	Ins_used	2850
_cell_measurement_the	eta_min	1.454
_cell_measurement_the	eta_max	26.729

;

_cell_measurement_temperature 296(2)

_exptl_crystal_description needle

_exptl_crystal_colour 'white'

_exptl_crystal_size_max 0.381

_exptl_crystal_size_mid 0.375

_exptl_crystal_size_min 0.186

_exptl_crystal_density_diffrn 1.391

_exptl_crystal_density_meas ?

_exptl_crystal_density_method 'not measured'

_exptl_crystal_F_000 672

_exptl_absorpt_coefficient_mu 0.098

_exptl_absorpt_correction_type multi-scan

_exptl_absorpt_process_details '(SADABS; Bruker, 2007)'

_exptl_absorpt_correction_T_min 0.983

_exptl_absorpt_correction_T_max 0.988

_exptl_special_details

;

;

_diffrn_ambient_temperature 296(2) _diffrn_radiation_type MoK\a _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker Kappa APEXII CCD'

_diffrn_measurement_method \w

- _diffrn_detector_area_resol_mean 7.901
- _diffrn_reflns_number 24896
- _diffrn_reflns_av_unetl/netl 0.0107
- _diffrn_reflns_av_R_equivalents 0.0194
- _diffrn_reflns_limit_h_min -9
- _diffrn_reflns_limit_h_max 9
- _diffrn_reflns_limit_k_min -9
- _diffrn_reflns_limit_k_max 9
- _diffrn_reflns_limit_l_min -35
- _diffrn_reflns_limit_l_max 35
- _diffrn_reflns_theta_min 1.454
- _diffrn_reflns_theta_max 26.729
- _diffrn_reflns_theta_full 25.242
- _diffrn_measured_fraction_theta_max 1.000
- _diffrn_measured_fraction_theta_full 1.000
- _diffrn_reflns_Laue_measured_fraction_max 1.000
- _diffrn_reflns_Laue_measured_fraction_full 1.000
- _diffrn_reflns_point_group_measured_fraction_max 1.000
- _diffrn_reflns_point_group_measured_fraction_full 1.000

_diffrn_standards_number 0

- _diffrn_standards_interval_count ?
- _diffrn_standards_interval_time ?
- _diffrn_standards_decay_% ?

_refine_special_details

;

Refinement of <i>F</i>2^ against ALL reflections. The weighted <i>R</i>-factor <i>wR</i> and goodness of fit <i>S</i> are based on <i>F</i>2^, conventional <i>R</i>-factors <i>R</i> are based on <i>F</i>, with <i>F</i> set to zero for negative <i>F</i>2^. The threshold expression of <i>F</i>2^> \s(<i>F</i>2^) is used only for calculating <i>R</i>-factors(gt) <i>etc</i>. and is not relevant to the choice of reflections for refinement. <i>R</i>-factors based on <i>F</i>2^ are statistically about twice as large as those based on <i>F</i>, and <i>R</i>-factors based on ALL data will be even larger.

;

_reflns_number_total	3262
_reflns_number_gt	2850
_reflns_threshold_expressio	on I>2\s(I)
_refine_ls_structure_factor_	_coef Fsqd
_refine_ls_matrix_type fu	II
_refine_ls_R_factor_all	0.0474
_refine_ls_R_factor_gt	0.0413
_refine_ls_wR_factor_ref	0.1095
_refine_ls_wR_factor_gt	0.1044
_refine_ls_goodness_of_fit_	_ref 1.029
_refine_ls_restrained_S_all	1.029
_refine_ls_number_reflns	3262

_refine_ls_number_parameters 217

_refine_ls_number_restraints 0

_refine_ls_extinction_method none

_refine_ls_extinction_coef

_refine_ls_hydrogen_treatment constr

_refine_ls_weighting_scheme calc

_refine_ls_weighting_details

'w=1/[\s^2^(Fo^2^)+(0.0472P)^2^+0.5545P] where P=(Fo^2^+2Fc^2^)/3'

.

_atom_sites_solution_hydrogens geom

_atom_sites_solution_primary direct

_atom_sites_solution_secondary difmap

_refine_ls_shift/su_max 0.000

_refine_ls_shift/su_mean 0.000

_computing_data_collection 'APEX2 (Bruker, 2007)'

_computing_cell_refinement 'SAINT (Bruker, 2007)'

_computing_data_reduction 'SAINT (Bruker, 2007)'

_computing_structure_solution 'SHELXT-2015 (Sheldrick, 2015)'

_computing_structure_refinement 'SHELXL-2019/2 (Sheldrick, 2019)'

_computing_molecular_graphics

'ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009)'

_computing_publication_material

;

WinGX (Farrugia, 2012) and PLATON (Spek, 2009)

;

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

- _atom_site_fract_y
- _atom_site_fract_z
- _atom_site_U_iso_or_equiv
- _atom_site_adp_type
- _atom_site_occupancy
- _atom_site_site_symmetry_order

_atom_site_calc_flag

_atom_site_refinement_flags_posn

- _atom_site_refinement_flags_adp
- _atom_site_refinement_flags_occupancy
- _atom_site_disorder_assembly

_atom_site_disorder_group

O1 O -0.32508(16) 0.6976(2) -0.15387(5) 0.0703(4) Uani 1 1 d

```
O2 O -0.16115(18) 0.5255(2) -0.19751(5) 0.0798(4) Uani 1 1 d . . . . .
```

```
O3 O 0.71000(14) 0.7812(2) 0.01037(4) 0.0708(4) Uani 1 1 d . . . . .
```

```
O4 O 0.30539(14) 0.68285(17) 0.09411(4) 0.0539(3) Uani 1 1 d \ldots\ldots
```

```
N1 N -0.18561(17) 0.6204(2) -0.16233(5) 0.0513(3) Uani 1 1 d . . . .
```

C1 C 0.23546(17) 0.69275(19) -0.06442(5) 0.0368(3) Uani 1 1 d

C2 C 0.26412(18) 0.6197(2) -0.10970(5) 0.0411(3) Uani 1 1 d

H2 H 0.378162 0.588637 -0.118585 0.049 Uiso 1 1 calc R U . . .

C3 C 0.12725(19) 0.5924(2) -0.14169(5) 0.0423(3) Uani 1 1 d

H3 H 0.147391 0.541166 -0.171616 0.051 Uiso 1 1 calc R U . . . C4 C -0.03952(18) 0.64298(19) -0.12818(5) 0.0393(3) Uani 1 1 d C5 C -0.07372(19) 0.7177(2) -0.08424(5) 0.0454(3) Uani 1 1 d H5 H -0.187833 0.751522 -0.076101 0.054 Uiso 1 1 calc R U . . . C6 C 0.06367(19) 0.7418(2) -0.05224(5) 0.0448(3) Uani 1 1 d H6 H 0.041600 0.791403 -0.022231 0.054 Uiso 1 1 calc R U . . . C7 C 0.38933(18) 0.7217(2) -0.03336(5) 0.0403(3) Uani 1 1 d H7 H 0.496814 0.723396 -0.049062 0.048 Uiso 1 1 calc R U . . . C8 C 0.40033(17) 0.74602(19) 0.01377(5) 0.0382(3) Uani 1 1 d C9 C 0.57861(18) 0.7828(2) 0.03507(5) 0.0420(3) Uani 1 1 d C10 C 0.58892(18) 0.82720(19) 0.08686(5) 0.0372(3) Uani 1 1 d C11 C 0.41995(19) 0.8177(2) 0.11433(5) 0.0461(4) Uani 1 1 d H11A H 0.445436 0.786103 0.147338 0.055 Uiso 1 1 calc R U . . . H11B H 0.362768 0.937884 0.113781 0.055 Uiso 1 1 calc R U . . . C12 C 0.24838(19) 0.7373(3) 0.04774(5) 0.0490(4) Uani 1 1 d H12A H 0.192562 0.857981 0.049484 0.059 Uiso 1 1 calc R U . . . H12B H 0.161719 0.649494 0.035877 0.059 Uiso 1 1 calc R U . . . C13 C 0.74777(18) 0.86477(19) 0.10560(5) 0.0392(3) Uani 1 1 d H13 H 0.840759 0.853469 0.084384 0.047 Uiso 1 1 calc R U . . . C14 C 0.79921(18) 0.92056(19) 0.15385(5) 0.0382(3) Uani 1 1 d C15 C 0.9736(2) 0.8908(2) 0.16801(5) 0.0474(4) Uani 1 d H15 H 1.050513 0.832369 0.147173 0.057 Uiso 1 1 calc R U . . . C16 C 1.0341(2) 0.9463(3) 0.21224(6) 0.0588(4) Uani 1 1 d H16 H 1.150418 0.923623 0.221233 0.071 Uiso 1 1 calc R U . . . C17 C 0.9228(3) 1.0350(3) 0.24302(6) 0.0609(5) Uani 1 1 d

H17 H 0.963743 1.073189 0.272828 0.073 Uiso 1 1 calc R U . . . C18 C 0.7506(3) 1.0674(2) 0.22986(6) 0.0556(4) Uani 1 1 d H18 H 0.675650 1.127991 0.250797 0.067 Uiso 1 1 calc R U . . . C19 C 0.6881(2) 1.0105(2) 0.18572(5) 0.0453(3) Uani 1 1 d H19 H 0.571210 1.032422 0.177244 0.054 Uiso 1 1 calc R U . . .

loop_

_atom_site_aniso_label

_atom_site_aniso_U_11

_atom_site_aniso_U_22

_atom_site_aniso_U_33

_atom_site_aniso_U_23

_atom_site_aniso_U_13

_atom_site_aniso_U_12

O1 0.0410(6) 0.0954(10) 0.0742(9) 0.0037(7) -0.0155(6) 0.0116(7) O2 0.0713(9) 0.1046(11) 0.0630(8) -0.0256(8) -0.0292(7) 0.0127(8) O3 0.0358(6) 0.1329(13) 0.0438(6) -0.0222(7) 0.0033(5) -0.0064(7) O4 0.0480(6) 0.0744(8) 0.0393(5) 0.0128(5) -0.0040(4) -0.0218(5) N1 0.0443(7) 0.0599(8) 0.0495(7) 0.0057(6) -0.0128(6) -0.0007(6) C1 0.0348(7) 0.0395(7) 0.0362(7) 0.0028(5) -0.0015(5) -0.0006(5) C2 0.0346(7) 0.0474(8) 0.0415(7) -0.0025(6) 0.0010(6) 0.0031(6) C3 0.0435(8) 0.0460(8) 0.0374(7) -0.0040(6) -0.0028(6) 0.0018(6) C4 0.0364(7) 0.0413(7) 0.0402(7) 0.0066(6) -0.0071(6) -0.0027(6) C5 0.0328(7) 0.0602(9) 0.0432(8) 0.0035(7) 0.0011(6) 0.0042(6) C6 0.0392(8) 0.0602(9) 0.0350(7) -0.0012(6) 0.0008(6) 0.0060(7) C7 0.0330(7) 0.0472(8) 0.0405(7) -0.0019(6) -0.0011(5) 0.0015(6) C8 0.0343(7) 0.0413(7) 0.0389(7) 0.0013(6) -0.0024(5) -0.0007(6) C9 0.0346(7) 0.0523(8) 0.0391(7) -0.0011(6) -0.0002(6) -0.0007(6) C10 0.0363(7) 0.0404(7) 0.0350(7) 0.0020(5) -0.0005(5) 0.0001(6) C11 0.0391(8) 0.0626(9) 0.0366(7) 0.0019(7) 0.0001(6) -0.0064(7) C12 0.0371(8) 0.0708(10) 0.0390(7) 0.0060(7) -0.0022(6) -0.0097(7) C13 0.0360(7) 0.0431(7) 0.0383(7) 0.0008(6) 0.0012(5) -0.0008(6) C14 0.0398(7) 0.0381(7) 0.0367(7) 0.0036(5) -0.0020(5) -0.0056(6) C15 0.0401(8) 0.0566(9) 0.0455(8) -0.0005(7) -0.0022(6) -0.0050(7) C16 0.0511(9) 0.0729(11) 0.0522(9) 0.0009(8) -0.0146(7) -0.0090(8) C17 0.0793(12) 0.0625(11) 0.0406(8) -0.0035(8) -0.0143(8) -0.0098(9) C18 0.0780(12) 0.0478(9) 0.0412(8) -0.0021(7) 0.0041(8) 0.0031(8) C19 0.0488(8) 0.0432(8) 0.0439(8) 0.0018(6) -0.0010(6) 0.0032(6)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

;

loop_

- _geom_bond_atom_site_label_1
- _geom_bond_atom_site_label_2
- _geom_bond_distance
- _geom_bond_site_symmetry_2
- _geom_bond_publ_flag
- O1 N1 1.2209(18) . ?
- O2 N1 1.2156(18) . ?
- O3 C9 1.2185(18) . ?
- O4 C11 1.4197(18) . ?
- O4 C12 1.4204(17) . ?
- N1 C4 1.4666(18) . ?
- C1 C2 1.3918(19).?
- C1 C6 1.3960(19).?
- C1 C7 1.4647(18).?
- C2 C3 1.3798(19).?
- C2 H2 0.9300 . ?
- C3 C4 1.373(2) . ?
- C3 H3 0.9300 . ?
- C4 C5 1.370(2) . ?
- C5 C6 1.380(2) . ?
- C5 H5 0.9300 . ?
- C6 H6 0.9300 . ?
- C7 C8 1.3334(19) . ?
- C7 H7 0.9300 . ?
- C8 C9 1.4974(19) . ?

C8 C12 1.502(2) . ?

- C9 C10 1.4863(19) . ?
- C10 C13 1.3382(19) . ?
- C10 C11 1.5025(19).?
- C11 H11A 0.9700 . ?
- C11 H11B 0.9700 . ?
- C12 H12A 0.9700 . ?
- C12 H12B 0.9700 . ?
- C13 C14 1.4597(19) . ?
- C13 H13 0.9300 . ?
- C14 C19 1.393(2) . ?
- C14 C15 1.395(2) . ?
- C15 C16 1.377(2) . ?
- C15 H15 0.9300 . ?
- C16 C17 1.371(3) . ?
- C16 H16 0.9300 . ?
- C17 C18 1.374(3) . ?
- C17 H17 0.9300 . ?
- C18 C19 1.382(2) . ?
- C18 H18 0.9300 . ?

C19 H19 0.9300 . ?

loop_

 $_geom_angle_atom_site_label_1$

_geom_angle_atom_site_label_2

_geom_angle_atom_site_label_3

_geom_angle

_geom_angle_site_symmetry_1

_geom_angle_site_symmetry_3

_geom_angle_publ_flag

C11 O4 C12 110.80(12) . . ?

O2 N1 O1 123.58(14) . . ?

O2 N1 C4 118.10(13) . . ?

O1 N1 C4 118.31(14) . . ?

C2 C1 C6 118.19(12) . . ?

C2 C1 C7 117.70(12) . . ?

C6 C1 C7 124.04(13) . . ?

C3 C2 C1 121.52(13) . . ?

C3 C2 H2 119.2 . . ?

C1 C2 H2 119.2 . . ?

C4 C3 C2 118.25(13) . . ?

C4 C3 H3 120.9 . . ?

C2 C3 H3 120.9 . . ?

C5 C4 C3 122.28(13) . . ?

C5 C4 N1 118.76(13) . . ?

C3 C4 N1 118.94(13) . . ?

C4 C5 C6 119.01(13) . . ?

C4 C5 H5 120.5 . . ?

C6 C5 H5 120.5 . . ?

C5 C6 C1 120.74(13) . . ?

C5 C6 H6 119.6 . . ?

- C1 C6 H6 119.6 . . ?
- C8 C7 C1 130.48(13) . . ?
- C8 C7 H7 114.8 . . ?
- C1 C7 H7 114.8 . . ?
- C7 C8 C9 117.78(13) . . ?
- C7 C8 C12 125.42(13) . . ?
- C9 C8 C12 116.80(12) . . ?
- O3 C9 C10 121.31(13) . . ?
- O3 C9 C8 120.85(13) . . ?
- C10 C9 C8 117.80(12) . . ?
- C13 C10 C9 117.76(12) . . ?
- C13 C10 C11 125.32(13) . . ?
- C9 C10 C11 116.86(12) . . ?
- O4 C11 C10 110.45(12) . . ?
- O4 C11 H11A 109.6 . . ?
- C10 C11 H11A 109.6 . . ?
- O4 C11 H11B 109.6 . . ?
- C10 C11 H11B 109.6 . . ?
- H11A C11 H11B 108.1 . . ?
- O4 C12 C8 111.17(12) . . ?
- O4 C12 H12A 109.4 . . ?
- C8 C12 H12A 109.4 . . ?
- O4 C12 H12B 109.4 . . ?
- C8 C12 H12B 109.4 . . ?

H12A C12 H12B 108.0 . . ?

C10 C13 C14 130.66(13) . . ?

C10 C13 H13 114.7 . . ?

C14 C13 H13 114.7 . . ?

C19 C14 C15 117.87(13) . . ?

C19 C14 C13 124.27(13) . . ?

C15 C14 C13 117.77(13) . . ?

C16 C15 C14 121.26(15) . . ?

C16 C15 H15 119.4 . . ?

C14 C15 H15 119.4 . . ?

C17 C16 C15 119.93(16) . . ?

C17 C16 H16 120.0 . . ?

C15 C16 H16 120.0 . . ?

C16 C17 C18 120.04(15) ..?

C16 C17 H17 120.0 . . ?

C18 C17 H17 120.0 . . ?

C17 C18 C19 120.47(16) . . ?

C17 C18 H18 119.8 . . ?

C19 C18 H18 119.8 . . ?

C18 C19 C14 120.43(15) . . ?

C18 C19 H19 119.8 . . ?

C14 C19 H19 119.8 . . ?

loop_

_geom_torsion_atom_site_label_1

- _geom_torsion_atom_site_label_2
- _geom_torsion_atom_site_label_3
- _geom_torsion_atom_site_label_4
- _geom_torsion
- _geom_torsion_site_symmetry_1
- _geom_torsion_site_symmetry_2
- _geom_torsion_site_symmetry_3
- _geom_torsion_site_symmetry_4
- _geom_torsion_publ_flag
- C6 C1 C2 C3 -1.3(2) ?
- C7 C1 C2 C3 -178.32(13) . . . ?
- C1 C2 C3 C4 1.4(2) ?
- C2 C3 C4 C5 -0.5(2) . . . ?
- C2 C3 C4 N1 178.06(13)?
- O2 N1 C4 C5 -167.28(16)?
- O1 N1 C4 C5 12.6(2) ?
- O2 N1 C4 C3 14.1(2) ?
- O1 N1 C4 C3 -165.99(15) . . . ?
- C3 C4 C5 C6 -0.5(2) . . . ?
- N1 C4 C5 C6 -179.01(14) ?
- C4 C5 C6 C1 0.6(2) ?
- C2 C1 C6 C5 0.3(2) . . . ?
- C7 C1 C6 C5 177.14(14)?
- C2 C1 C7 C8 -162.09(15) . . . ?
- C6 C1 C7 C8 21.0(2) ?

C1 C7 C8 C9 -176.74(14)?

C1 C7 C8 C12 4.1(3) . . . ?

C7 C8 C9 O3 -3.6(2) ?

C12 C8 C9 O3 175.64(16) ?

C7 C8 C9 C10 174.46(13) ?

C12 C8 C9 C10 -6.3(2) . . . ?

O3 C9 C10 C13 -0.2(2) . . . ?

C8 C9 C10 C13 -178.32(13)?

O3 C9 C10 C11 -177.59(16) ?

C8 C9 C10 C11 4.3(2) ?

C12 O4 C11 C10 -66.43(16) ?

C13 C10 C11 O4 -146.79(14) ?

C9 C10 C11 O4 30.34(18) ?

C11 O4 C12 C8 64.52(17) . . . ?

C7 C8 C12 O4 152.65(15) . . . ?

C9 C8 C12 O4 -26.6(2) ?

C9 C10 C13 C14 176.86(14) ?

C11 C10 C13 C14 -6.0(3) ?

C10 C13 C14 C19 -24.8(2) ?

C10 C13 C14 C15 158.80(15)?

C19 C14 C15 C16 0.8(2) . . . ?

C13 C14 C15 C16 177.39(15) ?

C14 C15 C16 C17 -0.9(3) ?

C15 C16 C17 C18 0.4(3) . . . ?

C16 C17 C18 C19 0.2(3) . . . ?

C17 C18 C19 C14 -0.4(2) ?

C15 C14 C19 C18 -0.1(2) ?

C13 C14 C19 C18 -176.47(14) ?

loop_

_geom_hbond_atom_site_label_D

_geom_hbond_atom_site_label_H

_geom_hbond_atom_site_label_A

_geom_hbond_distance_DH

_geom_hbond_distance_HA

_geom_hbond_distance_DA

_geom_hbond_angle_DHA

_geom_hbond_site_symmetry_A

_geom_hbond_publ_flag

C5 H5 O3 0.93 2.56 3.1620(18) 123.0 1_455 yes

C2 H2 O1 0.93 2.59 3.4102(19) 147.5 1_655 yes

_refine_diff_density_max 0.189

_refine_diff_density_min -0.189

_refine_diff_density_rms 0.033

CIF of BDBC without HKL data

data_global

PROCESSING SUMMARY (IUCr Office Use only)

_publ_contact_author

;

Muhammad Nawaz Tahir

University of Sargodha

Department of Physics

Sargodha

Pakistan

```
;
```

_publ_contact_author_phone	'0092 48 92 30 914'
_publ_contact_author_fax	'0092 48 32 22 121'
_publ_contact_author_email	'dmntahir_uos@yahoo.com'
_publ_requested_journal	
_journal_date_recd_electronic	?

_journal_date_to_coeditor ?

_journal_date_from_coeditor ?

_journal_date_accepted ?

- _journal_date_printers_first ?
- _journal_date_printers_final ?
- _journal_date_proofs_out ?
- _journal_date_proofs_in ?

_journal_coeditor_name ? _journal_coeditor_code ? _journal_paper_category ? _journal_coeditor_notes ; ; _journal_techeditor_code ? _iucr_compatibility_tag ? _journal_techeditor_notes ; ; _journal_coden_ASTM ?

?
?
?
?
?

_journal_page_last ?

_journal_suppl_publ_number ?

_journal_suppl_publ_pages ?

loop_

_publ_author_name

_publ_author_address

'Muhammad Ashfaq'

;

Department of Physics

University of Sargodha

Sargodha

Pakistan

;

'Muhammad Nawaz Tahir'

;

Department of Physics

University of Sargodha

Sargodha

Pakistan

;

'Aleksey Kuznetsov'

;

Departamento deQuímica, Campus Santiago Vitacura

Universidad Tecnica Federico Santa María

Av. Santa María 6400 Vitacura

Chile ; 'Akbar Ali' ; Department of Chemistry University of Sargodha Sargodha-40100 Pakistan ; _audit_creation_date ? _audit_creation_method ? # TEXT _publ_section_title ; (2E,5E)-2-benzylidene-5-(2,3-dimethoxybenzylidene)cyclopentanone

;

_publ_section_abstract

;

;

_publ_section_comment

- ;
- ;

_publ_section_exptl_refinement

- ;
- ;

_publ_section_exptl_prep

- ;
- ;

_publ_section_related_literature

- ;
- ;

_publ_section_references

;

Bruker (2007). <i>SADABS</i>. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). <i>APEX2</i> and <i>SAINT</i>. Bruker AXS Inc.,

Madison, Wisconsin, USA.

Farrugia, L. J. (2012). <i>J. Appl. Cryst.</i> 45, 849--854.

Sheldrick, G. M. (2014). <i>Acta Cryst.</i> A70, C1437.

Sheldrick, G. M. (2015). <i>Acta Cryst.</i> C71, 3--8.

Spek, A. L. (2009). <i>Acta Cryst.</i> D65, 148--155.

;

_publ_section_figure_captions

; ;

_publ_section_acknowledgements

; ;

data_A1K10A10

_audit_creation_method 'SHELXL-2019/2' _shelx_SHELXL_version_number '2019/2' _chemical_name_common ? _chemical_absolute_configuration '.' _chemical_name_systematic

;

(2E,5E)-2-benzylidene-5-(2,3-dimethoxybenzylidene)cyclopentanone

;

_chemical_formula_moiety	'C21 H20 O3'
_chemical_formula_sum	'C21 H20 O3'
_chemical_formula_iupac	'C21 H20 O3'
_chemical_formula_weight	320.37

loop_

_atom_type_symbol

_atom_type_description

_atom_type_scat_dispersion_real

_atom_type_scat_dispersion_imag

_atom_type_scat_source

'C' 'C' 0.0033 0.0016

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'H' 'H' 0.0000 0.0000

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'O' 'O' 0.0106 0.0060

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_space_group_crystal_system	orthorhombic
_space_group_IT_number	61
_space_group_name_H-M_alt	'P b c a'
_space_group_name_Hall	'-P 2ac 2ab'

_shelx_space_group_comment

;

The symmetry employed for this shelxl refinement is uniquely defined by the following loop, which should always be used as a source of symmetry information in preference to the above space-group names. They are only intended as comments.

;

loop_

_space_group_symop_operation_xyz 'x, y, z' 'x+1/2, -y+1/2, -z' '-x, y+1/2, -z+1/2' '-x+1/2, -y, z+1/2' '-x, -y, -z' 'x, -y-1/2, y-1/2, z' 'x, -y-1/2, z-1/2'

_cell_length_a	16.154(2)
_cell_length_b	6.9813(10)
_cell_length_c	28.997(4)
_cell_angle_alpha	90
_cell_angle_beta	90
_cell_angle_gamma	90

_cell_volume 3270.2(8)

_cell_formula_units_Z 8

- _cell_measurement_reflns_used 2623
- _cell_measurement_theta_min 1.404
- _cell_measurement_theta_max 25.347
- _cell_measurement_temperature 150(2)
- _exptl_crystal_description needle
- _exptl_crystal_colour 'white'
- _exptl_crystal_size_max 0.361
- _exptl_crystal_size_mid 0.345
- _exptl_crystal_size_min 0.194
- _exptl_crystal_density_diffrn 1.301
- _exptl_crystal_density_meas ?
- _exptl_crystal_density_method 'not measured'
- _exptl_crystal_F_000 1360
- _exptl_absorpt_coefficient_mu 0.086
- _exptl_absorpt_correction_type multi-scan
- _exptl_absorpt_process_details '(SADABS; Bruker, 2007)'
- _exptl_absorpt_correction_T_min 0.983
- _exptl_absorpt_correction_T_max 0.988

```
_exptl_special_details
```

- ;
- ;

_diffrn_ambient_temperature 150(2) _diffrn_radiation_type MoK\a _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker Kappa APEXII CCD' _diffrn_measurement_method \w _diffrn_detector_area_resol_mean 8.301 _diffrn_reflns_number 57033 _diffrn_reflns_av_unetl/netl 0.0108 _diffrn_reflns_av_R_equivalents 0.0258 _diffrn_reflns_limit_h_min -19 _diffrn_reflns_limit_h_max 19 _diffrn_reflns_limit_k_min -8 _diffrn_reflns_limit_k_max 5 _diffrn_reflns_limit_l_min -34 _diffrn_reflns_limit_l_max 34 _diffrn_reflns_theta_min 1.404 25.347 _diffrn_reflns_theta_max _diffrn_reflns_theta_full 25.242

- _diffrn_measured_fraction_theta_max 1.000
- _diffrn_measured_fraction_theta_full 1.000
- _diffrn_reflns_Laue_measured_fraction_max 1.000
- _diffrn_reflns_Laue_measured_fraction_full 1.000
- _diffrn_reflns_point_group_measured_fraction_max 1.000

_diffrn_reflns_point_group_measured_fraction_full 1.000 _diffrn_standards_number 0 _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ?

_refine_special_details

;

Refinement of <i>F</i>^2^ against ALL reflections. The weighted <i>R</i>-factor <i>wR</i> and goodness of fit <i>S</i> are based on <i>F</i>^2^, conventional <i>R</i>-factors <i>R</i> are based on <i>F</i>, with <i>F</i> set to zero for negative <i>F</i>^2^. The threshold expression of <i>F</i>^2^ > $s(<i>F</i>^2^)$ is used only for calculating <i>R</i>-factors(gt) <i>etc</i>. and is not relevant to the choice of reflections for refinement. <i>R</i>-factors based on <i>F</i>^2^ are statistically about twice as large as those based on <i>F</i>, and <i>R</i>-factors based on ALL data will be even larger.

; _refIns_number_total 2992 _refIns_number_gt 2623 _refIns_threshold_expression I>2\s(I) _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_R_factor_all 0.0623 _refine_ls_R_factor_gt 0.0547

- _refine_ls_wR_factor_ref 0.1161
- _refine_ls_wR_factor_gt 0.1123
- _refine_ls_goodness_of_fit_ref 1.159
- _refine_ls_restrained_S_all 1.159
- _refine_ls_number_reflns 2992
- _refine_ls_number_parameters 219
- _refine_ls_number_restraints 0
- _refine_ls_extinction_method none
- _refine_ls_extinction_coef
- _refine_ls_hydrogen_treatment constr
- _refine_ls_weighting_scheme calc
- _refine_ls_weighting_details
- 'w=1/[\s^2^(Fo^2^)+(0.0146P)^2^+4.2071P] where P=(Fo^2^+2Fc^2^)/3'

.

- _atom_sites_solution_hydrogens geom
- _atom_sites_solution_primary direct
- _atom_sites_solution_secondary difmap
- _refine_ls_shift/su_max 0.000
- _refine_ls_shift/su_mean 0.000
- _computing_data_collection 'APEX2 (Bruker, 2007)'
- _computing_cell_refinement 'SAINT (Bruker, 2007)'
- _computing_data_reduction 'SAINT (Bruker, 2007)'
- _computing_structure_solution 'SHELXT-2015 (Sheldrick, 2015)'
- _computing_structure_refinement 'SHELXL-2019/2 (Sheldrick, 2019)'
- _computing_molecular_graphics
- 'ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009)'

_computing_publication_material
;
WinGX (Farrugia, 2012) and PLATON (Spek, 2009)

;

loop_

- _atom_site_label
- _atom_site_type_symbol
- _atom_site_fract_x
- _atom_site_fract_y
- _atom_site_fract_z
- _atom_site_U_iso_or_equiv
- _atom_site_adp_type
- _atom_site_occupancy
- _atom_site_site_symmetry_order
- _atom_site_calc_flag
- _atom_site_refinement_flags_posn
- _atom_site_refinement_flags_adp
- _atom_site_refinement_flags_occupancy
- _atom_site_disorder_assembly
- _atom_site_disorder_group
- O1 O 0.10409(10) 0.1072(2) 0.16956(6) 0.0408(4) Uani 1 1 d
- O2 O 0.14532(11) 0.4216(3) 0.21617(6) 0.0489(5) Uani 1 1 d
- O3 O 0.02606(10) -0.2416(3) 0.03233(6) 0.0428(4) Uani 1 1 d
- C1 C 0.12653(14) 0.2649(3) 0.09683(9) 0.0361(5) Uani 1 1 d

C2 C 0.12498(14) 0.2710(3) 0.14481(9) 0.0356(5) Uani 1 1 d

C3 C 0.14809(14) 0.4352(4) 0.16897(9) 0.0388(6) Uani 1 1 d

C4 C 0.17201(14) 0.5974(4) 0.14479(10) 0.0431(6) Uani 1 1 d

H4 H 0.1873 0.7104 0.1609 0.052 Uiso 1 1 calc R U . . .

C5 C 0.17355(14) 0.5940(3) 0.09711(10) 0.0429(6) Uani 1 1 d

H5 H 0.1902 0.7052 0.0807 0.051 Uiso 1 1 calc R U . . .

C6 C 0.15136(14) 0.4322(3) 0.07323(10) 0.0415(6) Uani 1 1 d

H6 H 0.1527 0.4328 0.0405 0.050 Uiso 1 1 calc R U . . .

C7 C 0.02382(16) 0.1177(4) 0.19020(9) 0.0463(6) Uani 1 1 d

H7A H 0.0171 0.0122 0.2122 0.069 Uiso 1 1 calc R U . . .

H7B H -0.0186 0.1080 0.1662 0.069 Uiso 1 1 calc R U . . .

H7C H 0.0179 0.2401 0.2064 0.069 Uiso 1 1 calc R U . . .

C8 C 0.16035(18) 0.5934(4) 0.24129(10) 0.0568(8) Uani 1 1 d

H8A H 0.1538 0.5687 0.2744 0.085 Uiso 1 1 calc R U . . .

H8B H 0.1208 0.6919 0.2316 0.085 Uiso 1 1 calc R U . . .

H8C H 0.2168 0.6379 0.2352 0.085 Uiso 1 1 calc R U . . .

C9 C 0.10013(14) 0.0913(3) 0.07268(9) 0.0370(6) Uani 1 1 d

H9 H 0.0696 0.0026 0.0908 0.044 Uiso 1 1 calc R U . . .

C10 C 0.11260(14) 0.0394(3) 0.02889(8) 0.0353(5) Uani 1 1 d

C11 C 0.07701(13) -0.1422(3) 0.01166(8) 0.0356(6) Uani 1 1 d

C12 C 0.11160(13) -0.1831(3) -0.03459(8) 0.0349(5) Uani 1 1 d

C13 C 0.16969(14) -0.0223(3) -0.04778(8) 0.0381(6) Uani 1 1 d

H13A H 0.1538 0.0325 -0.0780 0.046 Uiso 1 1 calc R U . . .

H13B H 0.2273 -0.0699 -0.0498 0.046 Uiso 1 1 calc R U . . .

C14 C 0.16204(15) 0.1303(3) -0.00939(8) 0.0398(6) Uani 1 1 d

H14A H 0.2175 0.1682 0.0019 0.048 Uiso 1 1 calc R U . . .

H14B H 0.1334 0.2457 -0.0212 0.048 Uiso 1 1 calc R U . . .

C15 C 0.08736(14) -0.3402(3) -0.05773(8) 0.0368(6) Uani 1 1 d

H15 H 0.0499 -0.4203 -0.0414 0.044 Uiso 1 1 calc R U . . .

C16 C 0.10911(14) -0.4078(3) -0.10365(8) 0.0344(5) Uani 1 1 d

C17 C 0.06035(15) -0.5514(3) -0.12342(9) 0.0408(6) Uani 1 1 d

H17 H 0.0161 -0.6052 -0.1062 0.049 Uiso 1 1 calc R U . . .

C18 C 0.07545(16) -0.6163(4) -0.16752(10) 0.0467(7) Uani 1 1 d

H18 H 0.0404 -0.7112 -0.1806 0.056 Uiso 1 1 calc R U . . .

C19 C 0.14073(16) -0.5452(4) -0.19294(10) 0.0450(6) Uani 1 1 d

H19 H 0.1509 -0.5906 -0.2233 0.054 Uiso 1 1 calc R U . . .

C20 C 0.19114(15) -0.4067(4) -0.17346(9) 0.0425(6) Uani 1 1 d

H20 H 0.2369 -0.3586 -0.1905 0.051 Uiso 1 1 calc R U . . .

C21 C 0.17610(14) -0.3380(3) -0.12996(9) 0.0380(6) Uani 1 1 d

H21 H 0.2112 -0.2422 -0.1174 0.046 Uiso 1 1 calc R U . . .

loop_

_atom_site_aniso_label

_atom_site_aniso_U_11

_atom_site_aniso_U_22

_atom_site_aniso_U_33

_atom_site_aniso_U_23

_atom_site_aniso_U_13

_atom_site_aniso_U_12

01 0.0441(10) 0.0286(8) 0.0499(10) 0.0120(8) 0.0011(8) 0.0024(7)

02 0.0506(11) 0.0414(10) 0.0547(11) 0.0003(9) -0.0110(9) -0.0037(9) 03 0.0387(9) 0.0449(10) 0.0448(10) 0.0129(8) 0.0016(8) -0.0147(8) C1 0.0275(11) 0.0285(12) 0.0524(15) 0.0086(11) 0.0000(11) -0.0001(10) C2 0.0263(11) 0.0276(11) 0.0531(15) 0.0116(11) -0.0018(11) 0.0018(10) C3 0.0271(12) 0.0376(13) 0.0517(15) 0.0058(12) -0.0067(11) 0.0014(10) C4 0.0283(12) 0.0314(13) 0.0696(19) 0.0029(13) -0.0059(12) -0.0051(10) C5 0.0309(13) 0.0316(13) 0.0661(18) 0.0145(12) 0.0000(12) -0.0054(10) C6 0.0339(13) 0.0339(13) 0.0568(16) 0.0141(12) 0.0016(12) -0.0019(11) C7 0.0460(15) 0.0371(13) 0.0558(16) 0.0128(12) 0.0004(13) -0.0058(12) C8 0.0531(17) 0.0534(17) 0.0640(19) -0.0073(15) -0.0195(15) -0.0058(14) C9 0.0301(12) 0.0305(12) 0.0503(15) 0.0146(11) -0.0003(11) -0.0010(10) C10 0.0290(12) 0.0334(12) 0.0435(14) 0.0154(11) -0.0021(10) -0.0020(10) C11 0.0259(11) 0.0374(13) 0.0436(14) 0.0173(11) -0.0071(10) -0.0034(10) C12 0.0265(11) 0.0370(13) 0.0413(13) 0.0180(11) -0.0047(10) -0.0038(10) C13 0.0330(12) 0.0387(13) 0.0426(14) 0.0181(11) -0.0029(11) -0.0054(11) C14 0.0355(13) 0.0358(13) 0.0482(15) 0.0152(11) -0.0017(11) -0.0062(11) C15 0.0283(11) 0.0384(13) 0.0438(14) 0.0187(11) -0.0026(10) -0.0043(10) C16 0.0292(11) 0.0328(12) 0.0413(13) 0.0155(10) -0.0036(10) -0.0001(10) C17 0.0335(12) 0.0350(13) 0.0539(16) 0.0111(12) 0.0028(12) -0.0053(11) C18 0.0406(14) 0.0383(14) 0.0611(18) 0.0006(13) 0.0026(13) -0.0021(11) C19 0.0423(14) 0.0345(13) 0.0583(17) 0.0019(12) 0.0058(13) 0.0078(11) C20 0.0354(13) 0.0370(13) 0.0551(16) 0.0106(12) 0.0078(12) 0.0036(11) C21 0.0315(12) 0.0327(12) 0.0497(15) 0.0111(11) -0.0029(11) -0.0020(10)

_geom_special_details

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

loop_

;

_geom_bond_atom_site_label_1 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag O1 C2 1.391(3) . ? O1 C7 1.430(3) . ? O2 C3 1.373(3) . ? O2 C8 1.424(3) . ? O3 C11 1.232(3) . ? C1 C2 1.392(3) . ? C1 C6 1.412(3) . ? C1 C9 1.463(3) . ? C2 C3 1.395(3) . ? C3 C4 1.386(3) . ?

- C4 C5 1.383(4) . ?
- C4 H4 0.9500 . ?
- C5 C6 1.373(4) . ?
- C5 H5 0.9500 . ?
- C6 H6 0.9500 . ?
- C7 H7A 0.9800 . ?
- C7 H7B 0.9800 . ?
- C7 H7C 0.9800 . ?
- C8 H8A 0.9800 . ?
- C8 H8B 0.9800 . ?
- C8 H8C 0.9800 . ?
- C9 C10 1.336(3) . ?
- C9 H9 0.9500 . ?
- C10 C11 1.479(3) . ?
- C10 C14 1.508(3) . ?
- C11 C12 1.481(3) . ?
- C12 C15 1.344(3) . ?
- C12 C13 1.512(3) . ?
- C13 C14 1.546(4) . ?
- C13 H13A 0.9900 . ?
- C13 H13B 0.9900 . ?
- C14 H14A 0.9900 . ?
- C14 H14B 0.9900 . ?
- C15 C16 1.456(3) . ?
- C15 H15 0.9500 . ?

- C16 C17 1.398(3) . ?
- C16 C21 1.411(3) . ?
- C17 C18 1.378(4) . ?
- C17 H17 0.9500 . ?
- C18 C19 1.379(4) . ?
- C18 H18 0.9500 . ?
- C19 C20 1.385(4) . ?
- C19 H19 0.9500 . ?
- C20 C21 1.371(4) . ?
- C20 H20 0.9500 . ?
- C21 H21 0.9500 . ?

loop_

- _geom_angle_atom_site_label_1
- _geom_angle_atom_site_label_2
- _geom_angle_atom_site_label_3

_geom_angle

_geom_angle_site_symmetry_1

_geom_angle_site_symmetry_3

_geom_angle_publ_flag

- C2 O1 C7 113.19(18) . . ?
- C3 O2 C8 116.5(2) . . ?
- C2 C1 C6 117.7(2) . . ?
- C2 C1 C9 119.9(2) . . ?
- C6 C1 C9 122.4(2) . . ?

- O1 C2 C1 119.7(2) . . ?
- O1 C2 C3 118.8(2) . . ?
- C1 C2 C3 121.5(2) . . ?
- O2 C3 C4 124.8(2) . . ?
- O2 C3 C2 115.8(2) . . ?
- C4 C3 C2 119.5(2) . . ?
- C5 C4 C3 119.8(2) . . ?
- C5 C4 H4 120.1 . . ?
- C3 C4 H4 120.1 . . ?
- C6 C5 C4 120.9(2) . . ?
- C6 C5 H5 119.6 . . ?
- C4 C5 H5 119.6 . . ?
- C5 C6 C1 120.7(2) . . ?
- C5 C6 H6 119.6 . . ?
- C1 C6 H6 119.6 . . ?
- O1 C7 H7A 109.5 . . ?
- O1 C7 H7B 109.5 . . ?
- H7A C7 H7B 109.5 . . ?
- O1 C7 H7C 109.5 . . ?
- H7A C7 H7C 109.5 . . ?
- H7B C7 H7C 109.5 . . ?
- O2 C8 H8A 109.5 . . ?
- O2 C8 H8B 109.5 . . ?
- H8A C8 H8B 109.5 . . ?
- O2 C8 H8C 109.5 . . ?

H8A C8 H8C 109.5 . . ?

- H8B C8 H8C 109.5 . . ?
- C10 C9 C1 129.5(2) . . ?
- C10 C9 H9 115.3 . . ?
- C1 C9 H9 115.3 . . ?
- C9 C10 C11 119.7(2) . . ?
- C9 C10 C14 131.7(2) . . ?
- C11 C10 C14 108.5(2) . . ?
- O3 C11 C10 125.3(2) . . ?
- O3 C11 C12 125.7(2) . . ?
- C10 C11 C12 108.95(19) . . ?
- C15 C12 C11 120.0(2) . . ?
- C15 C12 C13 131.3(2) . . ?
- C11 C12 C13 108.7(2) . . ?
- C12 C13 C14 106.26(19) ..?
- C12 C13 H13A 110.5 . . ?
- C14 C13 H13A 110.5 . . ?
- C12 C13 H13B 110.5 . . ?
- C14 C13 H13B 110.5 . . ?
- H13A C13 H13B 108.7 . . ?
- C10 C14 C13 106.41(19) . . ?
- C10 C14 H14A 110.4 . . ?
- C13 C14 H14A 110.4 . . ?
- C10 C14 H14B 110.4 . . ?
- C13 C14 H14B 110.4 . . ?

H14A C14 H14B 108.6 . . ?

C12 C15 C16 130.6(2) . . ?

C12 C15 H15 114.7 . . ?

C16 C15 H15 114.7 . . ?

C17 C16 C21 117.3(2) . . ?

C17 C16 C15 118.1(2) . . ?

C21 C16 C15 124.6(2) . . ?

C18 C17 C16 121.1(2) . . ?

C18 C17 H17 119.5 . . ?

C16 C17 H17 119.5 . . ?

C17 C18 C19 120.9(3) . . ?

C17 C18 H18 119.6 . . ?

C19 C18 H18 119.6 . . ?

C18 C19 C20 118.9(3) . . ?

C18 C19 H19 120.6 . . ?

C20 C19 H19 120.6 . . ?

C21 C20 C19 121.0(2) . . ?

C21 C20 H20 119.5 . . ?

C19 C20 H20 119.5 . . ?

C20 C21 C16 120.8(2) . . ?

C20 C21 H21 119.6 . . ?

C16 C21 H21 119.6 . . ?

loop_

_geom_torsion_atom_site_label_1

- _geom_torsion_atom_site_label_2
- _geom_torsion_atom_site_label_3
- _geom_torsion_atom_site_label_4
- _geom_torsion
- _geom_torsion_site_symmetry_1
- _geom_torsion_site_symmetry_2
- _geom_torsion_site_symmetry_3
- _geom_torsion_site_symmetry_4
- _geom_torsion_publ_flag
- C7 O1 C2 C1 -107.6(2) ?
- C7 O1 C2 C3 75.7(3) ?
- C6 C1 C2 O1 -177.5(2) ?
- C9 C1 C2 O1 4.7(3) ?
- C6 C1 C2 C3 -0.8(3) . . . ?
- C9 C1 C2 C3 -178.7(2) . . . ?
- C8 O2 C3 C4 6.5(3) ?
- C8 O2 C3 C2 -173.7(2) ?
- O1 C2 C3 O2 -2.2(3) ?
- C1 C2 C3 O2 -178.8(2) ?
- O1 C2 C3 C4 177.6(2) ?
- C1 C2 C3 C4 1.0(4) ?
- O2 C3 C4 C5 179.1(2) ?
- C2 C3 C4 C5 -0.7(4) ?
- C3 C4 C5 C6 0.3(4) ?
- C4 C5 C6 C1 -0.1(4) ?

C2 C1 C6 C5 0.4(3) . . . ?

C9 C1 C6 C5 178.2(2) ?

C2 C1 C9 C10 -164.3(2) ?

C6 C1 C9 C10 18.0(4) ?

C1 C9 C10 C11 -177.9(2) ?

C1 C9 C10 C14 5.1(4) . . . ?

C9 C10 C11 O3 10.7(3) . . . ?

C14 C10 C11 O3 -171.6(2) ?

C9 C10 C11 C12 -170.1(2) ?

C14 C10 C11 C12 7.6(2) ?

O3 C11 C12 C15 0.2(3) . . . ?

C10 C11 C12 C15 -179.0(2) ?

O3 C11 C12 C13 178.2(2) . . . ?

C10 C11 C12 C13 -1.0(2) ?

C15 C12 C13 C14 171.9(2) ?

C11 C12 C13 C14 -5.8(2) ?

C9 C10 C14 C13 166.3(2) ?

C11 C10 C14 C13 -11.0(2) ?

C12 C13 C14 C10 10.2(2) ?

C11 C12 C15 C16 177.3(2) . . . ?

C13 C12 C15 C16 -0.2(4) ?

C12 C15 C16 C17 -165.2(2) ?

C12 C15 C16 C21 14.6(4) . . . ?

C21 C16 C17 C18 -2.5(3) . . . ?

C15 C16 C17 C18 177.3(2) . . . ?

C16 C17 C18 C19 2.0(4)? C17 C18 C19 C20 -0.1(4)? C18 C19 C20 C21 -1.1(4)? C19 C20 C21 C16 0.5(4)? C17 C16 C21 C20 1.3(3)? C15 C16 C21 C20 -178.5(2)?

loop_

_geom_hbond_atom_site_label_D

_geom_hbond_atom_site_label_H

_geom_hbond_atom_site_label_A

_geom_hbond_distance_DH

_geom_hbond_distance_HA

_geom_hbond_distance_DA

_geom_hbond_angle_DHA

_geom_hbond_site_symmetry_A

C14 H14B O3 0.99 2.60 3.206(3) 119.9 5

C17 H17 O3 0.95 2.49 3.319(3) 146.0 5_545

_refine_diff_density_max 0.215 _refine_diff_density_min -0.174

_refine_diff_density_rms 0.042