Supplementary Information

Rapid and efficient removal of multiple aqueous pesticides by one-step construction boric acid modified biochar

Niannian Cao^{a,b}, Jiawen Ji^a, Changsheng Li^a, Meng Yuan^a, Xuanjun Guo^a, Xingxing

Zong^b, Liqin Li^b, Yongqiang Ma^a, Chen Wang^{b,*}, Sen Pang^{a,*}

^a Department of Applied Chemistry, College of Science, China Agricultural University,

Beijing, 100193, China

^b State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China

*Corresponding author.

E-mail addresses: wangchenpla@163.com (C. Wang), pangsen7812@cau.edu.cn (S. Pang)

1. Adsorption capacity calculation equation

The equilibrium adsorption(q_e) was calculated as follows:

$$q_e = \frac{\left(C_0 - C_e\right)V}{m}$$

Where C_0 (initial) and C_e (equilibrium) denote pesticide concentrations (mg L⁻¹), V is the solution volume(L), and *m* is the mass of sorbent (g).

2. Kinetics model

The pseudo-first-order (Eq. (S1)), pseudo-second-order model (Eq. (S2)), Elovich model (Eq. (S3)), and Intra-particle diffusion model (Eq. (S4)) were used to describe the sorption kinetic data. The equations of the four kinetic models are represented as follows:

Pseudo-first-order model:

$$\ln\left(q_e - q_t\right) = \ln q_e - K_1 t \tag{S1}$$

Pseudo-second-order model:

$$\frac{t}{q_t} = \frac{1}{K_2 q_e^2} + \frac{t}{q_e}$$

(S2)

Elovic model:

$$q_t = \beta \ln (a\beta) + (\ln t) \tag{S3}$$

Intra-particle diffusion model:

$$q_t = K_p \sqrt{t} + C \tag{S4}$$

The symbols in the formula are explained as follows:

 q_t represents the adsorption capacity at time t (min), (mg g⁻¹); q_e represents the adsorption capacity at the equilibrium time (mg g⁻¹); t denotes the contact time (min); K_1 denotes the pseudo-

first-order rate constant (min⁻¹); K₂ denotes the pseudo-second-order rate constant (g mg⁻¹ min⁻¹). α is the sorption kinetic at the beginning (mg g⁻¹ min⁻¹) and β is the sorption constant related to the extent of surface coverage and the activation energy for chemisorption during the experiments (g mg⁻¹). The constants α and β can be obtained from the slope and intercept of the linear plot of q_t Vs lnt.

 K_p denotes the intra-particle diffusion rate constant (mg g⁻¹ min^{0.5}); C denotes the constant about the thickness of the boundary layer.

3. Isotherms models

Langmuir (Eq. (S5)), Freundlich (Eq. (S6)), and Temkin models (Eq. (S7)) were applied to determine the sorption characteristics. The three isotherm equations are provided as follows: Langmuir model:

$$\frac{1}{q_e} = \frac{1}{k_L q_m C_e} + \frac{1}{q_m}$$
(S5)

Freundlich model:

$$\ln q_e = \ln k_F + \frac{1}{n} \ln C_e \tag{S6}$$

Temkin model:

 $q_e = B \ln C_e + B \ln K_T \tag{S7}$

The symbols in the formula are explained as follows:

 q_e denotes the adsorption capacity at the equilibrium time (mg g⁻¹); q_m denotes the maximum adsorption capacity (mg g⁻¹). K_L denotes the Langmuir constant (L mg⁻¹); C_e denotes the equilibrium concentration of pesticides after adsorption (mg L⁻¹); K_F denotes the Freundlich

constant (L mg⁻¹). B is a constant related to the heat of sorption and it is defined by the expression B = RT/b, b is the Temkin constant (J mol⁻¹), T is the absolute temperature (K), R is the gas constant (8.314 J mol⁻¹ K), and A is the Temkin isotherm constant (L g⁻¹). From the plot of q_e Vs lnC_e , B and A can be calculated from the slopes (B) and intercepts (BlnA) respectively.

Pesticides	precursor ion (m/z)	product ion	Fragmentor (V)	Collision Energy (V)
	100	135.9*	120	28
Tricyclazole	190	163	130	20
		159*		30
Propiconazole	342.0	69	90	20
x · 1 1 · 1		209.1*	72	10
Imidacloprid	256	175.1	/3	15
T1	202	211*	95	5
Thiamethoxam	292	132.1	85	20

 Table S1. Multiple reaction monitoring (MRM) data acquisition parameters of HPLC-MS/MS for the four pesticides.

*Quantitative ion

Table S2. Elemental composition of different biochars

									-
Sample	C, wt%	H, wt%	O, wt%	B, wt%	N, wt%	H/C	O/C	(N+O)/C	
WA	82.88	1.924	10.908	0.0854	0.69	0.0232	0.1316	0.0315	
WAB0.5	74.18	2.627	18.797	0.045	0.85	0.0354	0.2534	0.0469	
WAB1	71.47	2.467	21.719	0.1017	1.06	0.0345	0.3039	0.0493	
WAB2	69.23	2.478	26.083	0.228	1.15	0.0358	0.3768	0.0524	
WAB4	69.78	2.489	26.591	0.199	1.21	0.0357	0.3811	0.0530	

Table S3. The XPS results of WA (pristine biochar) and WAB4 on C and O atomic percentages and distributions.

Sample C	C (0/)) O (%)	C/O -	C1s (%)			O1s (%)		
	C (%)			C=C	C-O	O-C=O	С=О	-OH	CO/CO ₂
WA	87.63	10.91	8.03	72.39	18.97	8.64	49.99	50.01	-

WAB4	80.32	18.79	4.27	74.17	13.17	12.66	56.64	38.29	5.07
------	-------	-------	------	-------	-------	-------	-------	-------	------

Table 54. Key physicochemical properties of investigated pesticides.									
pesticides	Water Solubility	Lipophilicity	Soil Affinity	ηV	H-bonding acceptor	H-bonding donor			
	(mg L ⁻¹) 20°C	(log P)	$(\log K_{oc})$	р к _a	parameter	parameter			
Tricyclazole	596	1.4	169	ND^{a}	3	0			
Imidacloprid	610	0.57	-	ND	4	1			
Thiamethoxam	4100	-0.13	56.2	ND	6	0			
Propiconazole	150	3.72	1086	1.09	3	1			

Table S4. Key physicochemical properties of investigated pesticides.

^a No dissociation.

	Table S5. Thermodynamic parameters of four pesticides adsorption on wAB4								
Pesticides	т	V	ΔG	ΔH	ΔS				
	1	\mathbf{K}_0	(KJ mol ⁻¹)	(KJ mol ⁻¹)	(J mol ⁻¹ K ⁻¹)				
	298	6.33	-4.572						
Tricyclazole	308	6.83	-4.920	9.0879	45.7270				
	318	7.98	-5.491						
Propiconazole	298	6.46	-4.622						
	ole 308	6.57	-4.821	0.8495	18.2908				
	318	6.6	-4.989						
	298	5.80	-4.355						
Imidacloprid	308	5.80	-4.501	0.4009	15.9454				
	318	5.86	-4.647						
Thiamethoxam	298	5.36	-4.514						
	308	5.01	-4.129	-6.0337	-6.2560				
	318	4.60	-4.033						

Table S5. Thermodynamic parameters of four pesticides adsorption on WAB4

Table S6 Physical and chemical properties of real water samples

Physico-chemical	Deionized water	Tan water	Paddy water	River water
indicators	Defomized water	Tup water	Taddy water	Kivel water
pН	7.06	7.07	7.04	8.2
Hardness	4	202.18	154.13	126.11
Alkalinity	8.5	166	126	138
CO ₃ ²⁻	0	0	0	4.5
HCO ₃ -	2.745	21.655	17.995	5.49
Ca^{2+}	0.5418	47.490	39.890	18.736
\mathbf{K}^+	0.0159	1.6918	1.7671	13.675
Mg^{2+}	0.1842	21.316	13.559	13.219
Na^+	0.6355	18.794	15.209	87.203
Cl-	8.5118	13.0414	15.8832	60.4238

SO_4^{2-} 7.9565 28.9050 1	5.4988 49.	9895

Concentration of WADA (model)	Immob	vilization	Mortality		
Concentration of WAB4 (mg L ·)	24 h	48 h	24 h	48 h	
0	0	0	0	0	
1	0	0	0	0	
10	0	0	0	0	
50	0	0	0	0	
100	0	0	0	0	
200	0	0	0	0	

Table S7. Daphnia. magna immobilization and mortality for different concentrations of WAB4

Fig. S1. LC-MS/MS spectrograms of five pesticides

Fig. S2. (a), (b) van't Hoff plots of tricyclazole adsorption onto WAB4; (c), (d) van't Hoff plots of propiconazole adsorption onto WAB4

Fig. S3. FTIR spectrum of WAB4 before and after adsorption of four pesticides

Fig. S4. The Zeta potential of all materials at varying solution pH from 3 to 11 (adsorbent dosage=1 g L^{-1}).