Supporting Information

Performance improvement of aqueous zinc batteries by zinc oxide

and Ketjen Black co-modifying glass fiber separators

Gang Lin, ^a Xiaoliang Zhou, ^{*a,c} Limin Liu, ^{*a,c} Huangmin Li, ^a Di Huang, ^a Jing Liu, ^a Jie Li^a and

Zhaohuan Wei*b

^a College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China.

^b School of Physics, University of Electronic Science and Technology of China, Chengdu,

611731, PR China.

^c Tianfu Yongxing Laboratory, Chengdu, PR China.

*Corresponding author. Tel.: +86 18884274920

E-mail address: xlzhou_swpu@sina.com (X.L. Zhou), liulimin_ly@126.com (L.M. Liu), zhwei@uestc.edu.cn (Z.H. Wei)

In this study, all calculations were employed with spin-polarized DFT framework and implemented by the DMol³ mode in Materials Studio software^{1, 2}. The generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerh (PBE) functional was adopted to depict the electronic exchange-correlation effects ^{3, 4}. The double numerical plus polarization (DNP) was chosen as the atomic orbital basis set. During the geometry optimization, the energy, force, and displacement convergence criteria were set to $2 \times$ 10^{-5} Ha, 4×10^{-3} Ha Å⁻¹, and 5×10^{-3} Å, respectively. A $2 \times 2 \times 1$ Monkhorst-Pack grid was employed to execute the Brillouin-zone integrations. The (400) facets of ZnO and (100) facets of Zn were used during simulating. The adsorption energy (E_{ads}) was calculated by the following equation:

$$E_{ads} = E_{total} - E_{sub} - E_{Zn}$$

 E_{total} represents the total energy of Zn(100) and ZnO(400) substrates combined with zinc atom. E_{sub} and E_{Zn} represent the energy of the substrate and the energy of zinc atom, respectively.

Fig. S1 The digital picture of the battery testing device used in this study.

Fig.S2 the cross-section SEM image of the modified separator.

A cross-sectional SEM diagram of the modified separator has been added as requested by the reviewer, in Fig.S2. And this is described in the supporting information: The modified separator was put into the battery test device and sealed for 30 min, and then the cross-sectional SEM and EDS analysis were performed. The Si element belongs to glass fiber, and Zn and C belong to modified materials. It can be seen from the figure that a small amount of ZnO was found in the separator, but didn't penetrate through it, which is why the separator didn't cause a short circuit. According to the EDS results, the modified separator can be divided into two parts: 1) the separator with some ZnO and KB, with a thickness of 180.1 μ m; 2) the modified layer of ZnO and KB not penetrated into the separator, with a thickness of 112.5 μ m.

Fig. S3 The overpotential of 5#, 4#, 1# and 2# failed.

Table S1. The fitting results of EIS for different cells.

	$R_e(\Omega)$	$R_{s}(\Omega)$	$R_{ct}(\Omega)$
Bare	0.792	3.9	226.8
ZnO	1.246	5.352	265.1
КВ	0.353	0.7255	121.4
Zn//ZnO-KB//Zn (3#)	2.043	0.89	197.2

Table S2 The EIS fitting results of Bare Zn//MnO2 and Modified Zn//MnO2

	Re(Ω)	$Rct(\Omega)$
Bare Zn//MnO ₂	1.15	96
Modified Zn//MnO ₂	0.468	2.557

References

- 1. B. J. Delley, J. Chem. Phys., 2000, 113, 7756-7764.
- 2. B. J. Delley, J. Chem. Phys., 1990, 92, 508-517.
- 3. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1998, 77, 3865-3868.
- 4. J. P. Perdew and W. Yue, *Physical review. B, Condensed matter*, 1992, 45, 13244-13249.