ARTICLE

Supplementary data

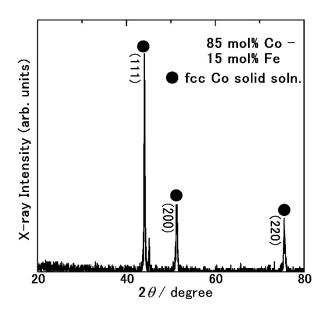


Fig.S-1 XRD pattern of 85 mol% Co – 15 mol% Fe sample composed of fcc Co solid solution. 47

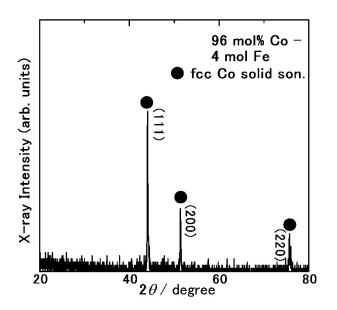


Fig.S-2 XRD pattern of 96 mol% Co – 4 mol% Fe sample composed of fcc Co solid solution. $^{\rm 47}$

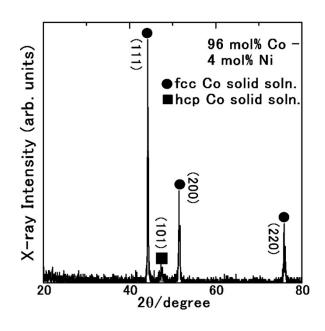


Fig.S-3 XRD pattern of 96 mol% Co – 4 mol% Fe sample composed of fcc Co solid solution. $^{\rm 47}$

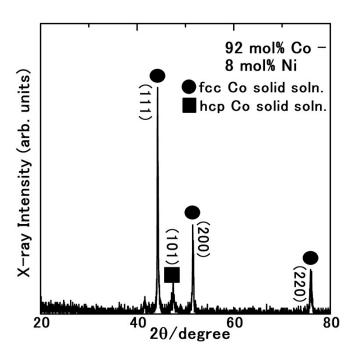


Fig.S-4 XRD pattern of 92 mol% Co – 8 mol% Ni sample composed of fcc^{47} and hcp^{48} Co solid solutions.

ARTICLE

X-ray Intensity (arb. units) (101) (101) (101) (101) (101) (101) (101) (101) (101) (100)(100)

Fig.S-5 XRD pattern of 85 mol% Co - 15 mol% Ni sample composed of fcc^{47} and hcp^{48} Co solid solutions.

Table S1 Summary of the thermodynamic values at 298.15 K and their uncertainties, U, of the substances of interest.

Substances	$\Delta_{f}H_{m}^{\circ}/(kJ)$ (mol of compd.) ⁻¹)	$U(\Delta_f H_m^\circ) / (k$ J (mol of compd.) ⁻¹)	S_m° /(J K ⁻¹ (mol of compd.) ⁻¹)	$U(S_m))/(J K^{-1})$ (mol of compd.)-1)	$\Delta_f G_m^{\circ}/(kJ)$ (mol of compd.) ⁻¹)	$U(\Delta_f G_m) / ($ kJ (mol of compd.) ⁻¹)	Refs.
NH ₃ BH ₃ (cr)	-178.0	± 5.9	unknown	-	unknown	-	(37)
NH₃(aq)	-81.170	± 0.326	109.040	± 0.913	-26.673	± 0.305	(49)
NH ⁴⁺ (aq)	-133.260	± 0.250	111.170	± 0.400	-79.398	± 0.278	(49)
B(OH)₃(aq)	-1072.800	± 0.800	162.400	± 0.600	-969.268	± 0.820	(49)
BO ₂ -(aq)	-772.37	± 0.56*2	-37.2	± 0.25*2	-678.89	± 0.57ª	(50)
H ₂ O(I)	-285.830	± 0.040	69.950	± 0.030	-237.140	± 0.041	(49)
H ₂ (g)	0.000	± 0.000	130.680	± 0.003	0.000	± 0.000	(49)

^a Uncertainties of BO₂-(aq) were estimated to be equal to those of B(OH)₃(aq).