Supporting Information

Synthesis of 2-Iminothiazolidin-4-ones via Copper-Catalyzed [2 + 1 + 2] Tandem Annulation

Mingming Zhao,^a Yiming Guo,^a Qi Wang,^a Lanqi Liu,^a Shujie Zhang,^a Wei Guo,^{b,*} Linping Wu,^{a,*} and Fayang G. Qiu^{a,*}

^a Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P. R.

China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China

^b Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University,

Ganzhou 341000, P. R. China

*E-mail: guoweigw@126.com; wu_linping@gibh.ac.cn; qiu_fayang@gibh.ac.cn

Table of contents

Experimental Section	
Screening Reaction Conditions	
X-ray Crystallographic Data for 5p	S4
Compound Characterization	
References	
NMR Spectra	

Experimental Section

1. General information

Melting points were tested using a melting point instrument and are uncorrected. IR spectra were collected from an infrared spectrometer on either potassium bromide pellets or liquid films between two potassium bromide pellets (Bruker Tensor 27). ¹H and ¹³C{1H} NMR spectra were recorded on a Bruker AVANCE 400 (¹H: 400 MHz) or a Bruker AVANCE 500 (¹H: 500 MHz) instrument. HRMS were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight). TLC was performed using commercially available 100–400 mesh silica gel plates (GF254). Unless otherwise noted, chemicals purchased from the vendors were used without further purification.

2. General procedure for synthesis of 2-iminothiazolidin-4-ones derivatives

A mixture of alkyl amines (0.222 mmol, 1.2 equiv), isothiocyanates (0.185 mmol), ethyl 2-diazoacetate (0.278 mmol, 1.5 equiv), CuI (0.074 mmol, 0.4 equiv) was stirred in CH₃CN/THF (v/v = 1:1, 2.0 mL) at room temperature (25 °C) for 12 h. After completion of the reaction (monitored by TLC), water (10 mL) was added to the reaction mixture, and the resulting mixture was extracted with ethyl acetate. The combined organic layers were then dried over MgSO₄, filtered, and then concentrated in vacuum. The residue was purified by using flash chromatography on silica gel to give the desired product (eluted with a mixture of petroleum ether and ethyl acetate (v/v = 15:1)).

3. The gram-scale synthesis of 4a

To a solution of phenylmethanamine **1a** (7.2 mmol, 0.778 g), phenyl isothiocyanate **2a** (6.0 mmol, 0.810 g), ethyl 2diazoacetate **3a** (9.0 mmol, 1.141 g) in 60.0 mL of CH₃CN/THF (v/v = 1:1) was added CuI (2.4 mmol, 0.457 g, 0.4 equiv) under air atmosphere. The solution was stirred at room temperature (25 °C) for 12 h (monitored by TLC). Water (30 mL) was added, and the resulting mixture was extracted with ethyl acetate. The combined organic phase was dried over MgSO₄, filtered, and then concentrated under reduced pressure. The crude product was purified by using flash column chromatography on silica gel eluted with a mixture of petroleum ether/ethyl acetate (v/v = 15:1) to afford the desired compound **4a** (1.44 g, yield of 85%).

4. General procedure for synthesis of 2-iminothiazolidin-4-ones derivatives of bioactive molecules

Alkyl amines (0.222 mmol, 1.2 equiv), isothiocyanates (0.185 mmol), ethyl 2-diazoacetate (0.278 mmol, 1.5 equiv), and CuI (0.074 mmol, 0.4 equiv) were added to CH₃CN/THF (v/v = 1:1, 2.0 mL). The mixture was stirred at room temperature (25 °C) for 12 h. Then, 4-nitrobenzaldehyde (0.204 mmol, 1.1 equiv), hexahydropyridine (0.370 mmol, 2.0 equiv), and ethanol (1.0 mL) were added, followed by heating under reflux for 12 h. After completion of the reaction (monitored by TLC), the reaction mixture was cooled to room temperature and the solvent was concentrated under reduced pressure. The crude residue was purified by using silica gel chromatography eluted with a mixture of petroleum ether/ethyl acetate (v/v = 15:1) to provide the desired product.

Screening Reaction Conditions

Table S1. The effect of the amount of CuI^[a]

NH2 +	+		Cul CH ₃ CN, 25 °C, 12 h	N N S
1a	2a	3a		4a
Entry		CuI (equ	uiv)	Yield (%) ^[b]
1		0.2		0
2		0.3		0
3		0.4		78
4		0.5		59
5		0.6		46
6		0.8		44
7		1.0		46

^[a] Reaction conditions: **1a** (0.222 mmol), **2a** (0.185 mmol), **3a** (0.278 mmol) and CuI in CH₃CN (2 mL), open to air at room temperature (25 °C) for 12 h.

^[b] Isolated yield.

Table S2. The ratio of reactants^[a]

NH2 +	NCS	+ 10	Cul (0.4 equiv) ► I₃CN, 25 ºC, 12 h	N S
1a	2a	3a		4a
Entr	у	1a:2a:3a (mole	ratio)	Yield (%) ^[b]
1		1.2:1:1.5		78
2		1.2:1:2.3		57
3		1.2:2:2.3		26
4		2.4:1:1.5		43
5		2.4:1:2.3		56
6		2.4:1:3.0		75

^[a] Reaction conditions: **1a**, **2a**, **3a** and CuI (0.4 equiv) in CH₃CN (2 mL), open to air at room temperature (25 °C) for 12 h. ^[b] Isolated yield.

Table S3. The effect of reaction time^[a]

^[a] Reaction conditions: 1a (0.222 mmol), 2a (0.185 mmol), 3a (0.278 mmol) and CuI (0.4 equiv) in CH₃CN (2 mL), open to air

at room temperature (25 °C).

^[b] Isolated yield.

Table S4. The effect of reaction temperature^[a]

NH ₂	+ NCS +		Cul (0.4 equiv) CH ₃ CN, 12 h	N S
1a	2a	3a		4a
Ent	ry	T (°C)		Yield (%) ^[b]
1		rt		78
2		40		64
3		50		61
4		60		57
5		70		61
6		80		58

^[a] Reaction conditions: **1a** (0.222 mmol), **2a** (0.185 mmol), **3a** (0.278 mmol) and CuI (0.4 equiv) in CH₃CN (2 mL), open to air for 12 h.

^[b] Isolated yield.

X-ray Crystallographic Data for 5p

The crystal growth procedure: Compound **5p** (30 mg) was dissolved in 0.5 mL of CH_2Cl_2 , and then the mixture was added into a solution of petroleum ether (5 mL)/ethyl acetate (5 mL). The mixed solution was evaporated slowly at room temperature (25 °C) to afford the crystals **5p**. Crystal data collection and refinement parameters of **5p** are summarized in Table S5.

Figure S1. The Crystal Structure of 5p

The CCDC number of 5p is 2190019, the detail information please see 5p.cif document.

Table S5. Crystal data and structure refinement for compound 5p

Identification code	2190019
Empirical formula	$C_{13}H_{14}N_2O_3S$
Formula weight	278.32

Temperature/K	99.99(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	18.5249(3)
b/Å	5.74470(10)
c/Å	12.9917(2)
α/°	90.00
β/°	108.935(2)
· γ/°	90.00
Volume/Å ³	1307.76(4)
Ζ	4
$\rho_{calc}g/cm^3$	1.414
µ/mm ⁻¹	2.265
F(000)	584.0
Radiation	$Cu K\alpha (\lambda = 1.54184)$
29 range for data collection/°	10.096 to 155.468
Index ranges	$-22 \le h \le 23, -6 \le k \le 6, -16 \le l \le 15$
Reflections collected	6834
Independent reflections	2654
Data/restraints/parameters	2654/0/173
Goodness-of-fit on F ²	1.110
Final R indexes [I>= 2σ (I)]	$R1 = 0.0351, wR_2 = 0.1016$
Final R indexes [all data]	$R1 = 0.0363, wR_2 = 0.1029$
Largest diff. peak/hole / e Å-3	0.32/-0.35

CIF files of 5p

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) lj-0704

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: lj-0704

Bond precision:	C-C = 0.0019 A Wavelength=1.54184				
Cell:	a=18.5249(3) alpha=90 100 K	b=5.7447(1) beta=108.935(2)	c=12.9917(2) gamma=90		
remperature.	100 K				
	Calculated	Reported			
Volume	1307.76(4)	1307.76(4)			
Space group	P 21/c	P 1 21/c 1			
Hall group	-P 2ybc	-P 2ybc			
Moiety formula	C13 H14 N2 O3 S	C13 H14 N2	2 03 S		
Sum formula	C13 H14 N2 O3 S	C13 H14 N2	2 03 S		
Mr	278.32	278.32			
Dx,g cm-3	1.414	1.414			
Z	4	4			
Mu (mm-1)	2.265	2.265			
F000	584.0	584.0			
F000'	587.03				
h,k,lmax	23,7,16	23,6,16			
Nref	2790	2654			
Tmin, Tmax	0.873,0.893	0.459,1.00	00		
Tmin'	0.797				
Correction metho AbsCorr = MULTI-	d= # Reported T L SCAN	imits: Tmin=0.459 Tma	ax=1.000		
Data completenes	s= 0.951	Theta(max) = 77.734			
R(reflections)=	0.0351(2488)		wR2(reflections)= 0.1029(2654)		
S = 1.110	Npar= 1	173			
The following ALERTS test-name_ALE Click on the hyperli	5 were generated. Each ERT_alert-type_alert-J inks for more details	h ALERT has the format L evel. of the test.			

🞈 Alert level B

PLAT196_ALERT_1_B No	TEMP	record and	_measurement_temperature	.NE.	293	Degree

6 Report

Alert level C PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600

Alert level G

PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).1 NotePLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.60086 NotePLAT941_ALERT_3_G Average HKL Measurement Multiplicity2.6 LowPLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.4 Info

```
0 ALERT level A = Most likely a serious problem - resolve or explain
1 ALERT level B = A potentially serious problem, consider carefully
1 ALERT level C = Check. Ensure it is not caused by an omission or oversight
4 ALERT level G = General information/check it is not something unexpected
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
3 ALERT type 3 Indicator that the structure quality may be low
1 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 28/11/2022; check.def file version of 28/11/2022

Datablock lj-0704 - ellipsoid plot

Compound Characterization

(*Z*)-3-Benzyl-2-(phenylimino)thiazolidin-4-one (4a).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow oil: 85% yield (44.3 mg, 0.16 mmol); IR (KBr, cm⁻¹) 3431, 2930, 1717, 1645, 1594, 1428, 1381, 1325, 1155, 1080, 772, 692; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.55 (d, *J* = 7.2 Hz, 2H), 7.38-7.30 (m, 5H), 7.16 (t, *J* = 7.4 Hz, 1H), 6.98 (d, *J* = 7.8 Hz, 2H), 5.05 (s, 2H), 3.79 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.6, 153.9, 148.0, 136.0, 129.3, 129.1, 128.5, 127.9, 124.7, 121.0, 46.3, 32.7; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₆H₁₃N₂OS 281.0754, found 281.0755.

(*Z*)-3-(4-Bromobenzyl)-2-(phenylimino)thiazolidin-4-one (4b).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow solid: 74% yield (49.3 mg, 0.14 mmol); mp 110-112 °C; IR (KBr, cm⁻¹) 3419, 3187, 3034, 2932, 1715, 1642, 1590, 1485, 1380, 1262, 1159, 1012, 800, 769, 693; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.46 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 8.3 Hz, 2H), 7.35 (t, *J* = 7.7 Hz, 2H), 7.15 (t, *J* = 7.4 Hz, 1H), 6.94 (d, *J* = 7.8 Hz, 2H), 4.97 (s, 2H), 3.81 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.6, 153.8, 147.8, 134.9, 131.6, 131.0, 129.3, 124.8, 122.1, 121.0, 45.6, 32.7; HRMS (ESI) *m/z* [M – H][–] calcd for C₁₆H₁₂BrN₂OS 358.9859, found 358.9858.

(*Z*)-2-(Phenylimino)-3-(4-(trifluoromethyl)benzyl)thiazolidin-4-one (4c). Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow solid: 70% yield (45.3 mg, 0.13 mmol); mp 121-122 °C; IR (KBr, cm⁻¹) 3436, 3034, 2917, 2850, 1720, 1637, 1595, 1378, 1325, 1155, 1066, 871, 770; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.62 (q, *J* = 8.2 Hz, 4H), 7.36 (t, *J* = 7.7 Hz, 2H), 7.16 (t, *J* = 7.4 Hz, 1H), 6.95 (d, *J* = 7.6 Hz, 2H), 5.08 (s, 2H), 3.84 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.5, 153.7, 147.7, 139.7 (d, *J* = 5.0 Hz), 130.2 (q, *J* = 130.0 Hz), 129.3 (d, *J* = 4.2 Hz), 125.5 (q, *J* = 3.7 Hz), 125.2, 124.8, 123.0, 120.9, 45.7, 32.7; ¹⁹F NMR (471 MHz, CDCl₃, ppm) δ -62.56; HRMS (ESI) *m/z* [M – H][–] calcd for C₁₇H₁₂F₃N₂OS 349.0628, found 349.0629.

(Z)-3-(4-Methylbenzyl)-2-(phenylimino)thiazolidin-4-one (4d).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow solid: 80% yield (43.8 mg, 0.15 mmol); mp 92-94 °C; IR (KBr, cm⁻¹) 3435, 3028, 2949, 1722, 1642, 1594, 1425, 1380, 1262, 1155, 1022, 807, 769; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.44 (d, *J* = 7.7 Hz, 2H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.15 (d, *J* = 7.1 Hz, 3H), 6.96 (d, *J* = 7.7 Hz, 2H), 4.99 (s, 2H), 3.79 (s, 2H), 2.35 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.7, 154.0,

148.0, 137.7, 133.0, 129.3, 129.2, 129.2, 124.6, 121.0, 46.0, 32.7, 21.2; HRMS (ESI) m/z [M – H][–] calcd for C₁₇H₁₅N₂OS 295.0911, found 295.0910.

(*Z*)-3-(4-Methoxybenzyl)-2-(phenylimino)thiazolidin-4-one (4e).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 10:1). Yellow solid: 91% yield (52.5 mg, 0.17 mmol); mp 135-137 °C; IR (KBr, cm⁻¹) 3430, 3033, 2952, 1713, 1643, 1591, 1506, 1381, 1246, 1159, 1028, 760, 689; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.50 (d, *J* = 8.5 Hz, 2H), 7.35 (t, *J* = 7.8 Hz, 2H), 7.15 (t, *J* = 7.4 Hz, 1H), 6.97 (d, *J* = 7.6 Hz, 2H), 6.87 (d, *J* = 8.5 Hz, 2H), 4.97 (s, 2H), 3.80 (s, 3H), 3.78 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.6, 159.4, 154.0, 148.0, 130.7, 129.2, 128.3, 124.6, 121.0, 113.8, 55.3, 45.8, 32.7; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₇H₁₅N₂O₂S 311.0860, found 311.0860.

(*Z*)-3-(4-Hydroxybenzyl)-2-(phenylimino)thiazolidin-4-one (4f). Eluent: petroleum ether/ethyl acetate (v/v = 3:1). Yellow solid: 77% yield (42.5 mg, 0.14 mmol); mp 129-130 °C; IR (KBr, cm⁻¹) 3395, 3032, 2941, 1705, 1649, 1594, 1515, 1428, 1325, 1262, 1158, 1103, 764, 695; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.41 (d, *J* = 8.3 Hz, 2H), 7.35 (t, *J* = 7.8 Hz, 2H), 7.15 (t, *J* = 7.4 Hz, 1H), 6.96 (d, *J* = 7.6 Hz, 2H), 6.76 (d, *J* = 8.4 Hz, 2H), 4.96 (s, 2H), 3.79 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 172.2, 155.7, 154.2, 147.9, 130.9, 129.3, 128.0, 124.7, 121.0, 115.3, 45.8, 32.8; HRMS (ESI) *m/z* [M – H][–] calcd for C₁₆H₁₃N₂O₂S 297.0703, found 297.0702.

(*Z*)-4-((4-Oxo-2-(phenylimino)thiazolidin-3-yl)methyl)benzonitrile (4g).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 5:1). Yellow oil: 87% yield (49.4 mg, 0.16 mmol); IR (KBr, cm⁻¹) 3431, 3060, 2924, 2228, 1728, 1633, 1594, 1491, 1390, 1337, 1160, 1025, 768, 697; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.60 (q, *J* = 8.2 Hz, 4H), 7.34 (t, *J* = 7.7 Hz, 2H), 7.14 (t, *J* = 7.4 Hz, 1H), 6.92 (d, *J* = 7.7 Hz, 2H), 5.05 (s, 2H), 3.84 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.5, 153.7, 147.5, 141.0, 132.4, 129.6, 129.4, 124.9, 120.9, 118.6, 111.9, 45.8, 32.7; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₇H₁₂N₃OS 306.0707, found 306.0705.

(*Z*)-3-(3-Bromobenzyl)-2-(phenylimino)thiazolidin-4-one (4h).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow solid: 95% yield (63.3 mg, 0.18 mmol); mp 91-93 °C; IR (KBr, cm⁻¹) 3431, 3060, 2930, 1717, 1633, 1594, 1378, 1155, 1071, 768, 697; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.70 (s, 1H), 7.46-7.43 (m, 2H), 7.36 (t, *J* = 7.8 Hz, 2H), 7.21 (t, *J* = 7.8 Hz, 1H), 7.15 (t, *J* = 7.4 Hz, 1H), 6.96 (d, *J* = 7.6 Hz, 2H), 4.99 (s, 2H), 3.83 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.5,

153.8, 147.7, 138.0, 132.1, 131.1, 130.1, 129.3, 127.8, 124.8, 122.5, 121.0, 45.6, 32.7; HRMS (ESI) m/z [M – H]⁻ calcd for C₁₆H₁₂BrN₂OS 358.9859, found 358.9857.

(*Z*)-2-(Phenylimino)-3-(3-(trifluoromethyl)benzyl)thiazolidin-4-one (4i). Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow oil: 74% yield (47.9 mg, 0.14 mmol); IR (KBr, cm⁻¹) 3439, 3064, 2930, 1725, 1636, 1594, 1378, 1325, 1164, 1071, 768, 697; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.85 (s, 1H), 7.72 (d, *J* = 7.6 Hz, 1H), 7.58 (d, *J* = 7.7 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 1H), 7.36 (t, *J* = 7.7 Hz, 2H), 7.16 (t, *J* = 7.4 Hz, 1H), 6.95 (d, *J* = 7.7 Hz, 2H), 5.08 (s, 2H), 3.83 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.5, 153.8, 147.7, 136.8, 132.6, 130.9 (q, *J* = 125.0 Hz), 129.3, 129.0, 126.2 (q, *J* = 15.0 Hz), 125.1, 124.8, 123.0, 120.9, 45.8, 32.7; ¹⁹F NMR (471 MHz, CDCl₃, ppm) δ -62.55; HRMS (ESI) *m/z* [M - H]⁻ calcd for C₁₇H₁₂F₃N₂OS 349.0628, found 349.0631.

(*Z*)-3-(3-Methylbenzyl)-2-(phenylimino)thiazolidin-4-one (4j).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow oil: 70% yield (38.3 mg, 0.13 mmol); IR (KBr, cm⁻¹) 3431, 3045, 2937, 1717, 1633, 1594, 1487, 1378, 1325, 1155, 768, 697; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.36 (dd, *J* = 14.2, 7.4 Hz, 4H), 7.24 (t, *J* = 13.0 Hz, 1H), 7.15 (dd, *J* = 16.6, 7.7 Hz, 2H), 6.97 (d, *J* = 7.6 Hz, 2H), 5.01 (s, 2H), 3.81 (s, 2H), 2.37 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.7, 154.0, 148.0, 138.2, 135.9, 129.8, 129.3, 128.7, 128.4, 126.2, 124.6, 121.0, 46.3, 32.7, 21.5; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₇H₁₅N₂OS 295.0911, found 295.0913.

(*Z*)-3-(3-Methoxybenzyl)-2-(phenylimino)thiazolidin-4-one (4k).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 10:1). Yellow oil: 77% yield (44.4 mg, 0.14 mmol); IR (KBr, cm⁻¹) 3434, 3055, 2934, 1722, 1633, 1589, 1487, 1379, 1260, 1155, 1040, 768, 694; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.37 (t, *J* = 7.8 Hz, 2H), 7.28 (d, *J* = 8.1 Hz, 1H), 7.17 (t, *J* = 7.4 Hz, 1H), 7.13 (d, *J* = 7.4 Hz, 2H), 6.98 (d, *J* = 7.6 Hz, 2H), 6.88-6.87 (m, 1H), 5.03 (s, 2H), 3.82 (s, 3H), 3.81 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.6, 159.7, 154.0, 148.0, 137.4, 129.5, 129.3, 124.6, 121.4, 121.0, 114.5, 113.6, 55.3, 46.2, 32.7; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₇H₁₅N₂O₂S 311.0860, found 311.0861.

(*Z*)-3-(2-Chlorobenzyl)-2-(phenylimino)thiazolidin-4-one (41).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow oil: 65% yield (38.0 mg, 0.12 mmol); IR (KBr, cm⁻¹) 3445, 3055, 2926, 1725, 1644, 1588, 1379, 1162, 1049, 764, 741, 690; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.39 (d, *J* = 7.0 Hz, 1H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.23 (s, 2H), 7.18 (d, *J* = 6.7 Hz, 1H), 7.13 (t,

J = 7.3 Hz, 1H), 6.91 (d, J = 7.6 Hz, 2H), 5.18 (s, 2H), 3.91 (s, 2H); ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃, ppm) δ 171.5, 153.3, 147.7, 133.1, 132.9, 129.7, 129.2, 128.8, 127.6, 126.8, 124.7, 121.0, 44.2, 32.7; HRMS (ESI) m/z [M – H]⁻ calcd for C₁₆H₁₂ClN₂OS 315.0364, found 315.0367.

(*Z*)-3-(2-Bromobenzyl)-2-(phenylimino)thiazolidin-4-one (4m). Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow solid: 73% yield (48.6 mg, 0.14 mmol); mp 85-87 °C; IR (KBr, cm⁻¹) 3444, 3055, 2920, 1722, 1643, 1591, 1376, 1159, 1028, 760, 739, 693; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.58 (d, *J* = 7.9 Hz, 1H), 7.35-7.28 (m, 3H), 7.14 (dd, *J* = 14.4, 7.1 Hz, 3H), 6.92 (d, *J* = 7.7 Hz, 2H), 5.14 (s, 2H), 3.92 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.5, 153.3, 147.6, 134.4, 133.0, 129.2, 128.9, 127.4, 127.2, 124.8, 122.9, 121.0, 46.6, 32.7; HRMS (ESI) *m/z* [M – H][–] calcd for C₁₆H₁₂BrN₂OS 358.9859, found 358.9861.

(*Z*)-3-(2-Methylbenzyl)-2-(phenylimino)thiazolidin-4-one (4n). Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow solid: 85% yield (46.5 mg, 0.16 mmol); mp 85-86 °C; IR (KBr, cm⁻¹) 3444, 3055, 2921, 1722, 1643, 1591, 1488, 1376, 1345, 1159, 744, 697; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.34 (t, *J* = 7.7 Hz, 2H), 7.27-7.26 (m, 1H), 7.19 (d, *J* = 3.2 Hz, 3H), 7.14 (t, *J* = 7.4 Hz, 1H), 6.94 (d, *J* = 7.6 Hz, 2H), 5.06 (s, 2H), 3.86 (s, 2H), 2.48 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.8, 153.9, 147.9, 136.2, 133.8, 130.5, 129.3, 127.5, 127.1, 126.1, 124.7, 121.0, 43.9, 32.7, 19.6; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₇H₁₅N₂OS 295.0911, found 295.0914.

(*Z*)-3-(2-Methoxybenzyl)-2-(phenylimino)thiazolidin-4-one (4o).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 10:1). Yellow solid: 61% yield (35.2 mg, 0.11 mmol); mp 96-98 °C; IR (KBr, cm⁻¹) 3427, 3034, 2921, 1732, 1632, 1589, 1488, 1380, 1244, 1160, 1025, 748, 692; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.34 (t, *J* = 7.7 Hz, 2H), 7.28 (d, *J* = 6.9 Hz, 1H), 7.14 (t, *J* = 8.3 Hz, 2H), 6.95 (t, *J* = 8.5 Hz, 3H), 6.90 (d, *J* = 8.2 Hz, 1H), 5.12 (s, 2H), 3.89 (s, 2H), 3.88 (s, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.6, 157.2, 153.8, 148.1, 129.2, 128.5, 127.4, 124.5, 123.6, 121.0, 120.3, 110.5, 55.5, 41.9, 32.7; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₇H₁₅N₂O₂S 311.0860, found 311.0863.

(*Z*)-3-(3,4-Dichlorobenzyl)-2-(phenylimino)thiazolidin-4-one (4p). Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow solid: 81% yield (52.4 mg, 0.15 mmol); mp 127-129 °C; IR (KBr, cm⁻¹) 3427, 3033, 2928, 1715, 1634, 1589, 1472, 1376, 1328, 1159, 1029, 894, 764, 687; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.65 (s, 1H), 7.41-7.34 (m, 4H), 7.16 (t, *J* = 7.3 Hz, 1H), 6.95

(d, J = 7.7 Hz, 2H), 4.96 (s, 2H), 3.82 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.5, 153.7, 147.6, 136.0, 132.5, 132.2, 131.2, 130.5, 129.4, 128.7, 124.9, 121.0, 45.1, 32.7; HRMS (ESI) m/z [M – H][–] calcd for C₁₆H₁₁Cl₂N₂OS 348.9975, found 348.9976.

(*Z*)-3-(3,5-Dimethoxybenzyl)-2-(phenylimino)thiazolidin-4-one (4q). Eluent: petroleum ether/ethyl acetate (v/v = 5:1). Yellow oil: 63% yield (39.9 mg, 0.12 mmol); IR (KBr, cm⁻¹) 3437, 3032, 2937, 1723, 1632, 1589, 1434, 1380, 1322, 1160, 1067, 768, 692; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.35 (t, *J* = 7.8 Hz, 2H), 7.14 (t, *J* = 7.4 Hz, 1H), 6.96 (d, *J* = 7.4 Hz, 2H), 6.69 (d, *J* = 2.2 Hz, 2H), 6.41 (t, *J* = 2.1 Hz, 1H), 4.97 (s, 2H), 3.80 (s, 2H), 3.78 (s, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.6, 160.8, 154.1, 148.0, 138.1, 129.3, 124.6, 121.0, 106.9, 100.1, 55.4, 46.3, 32.7; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₈H₁₇N₂O₃S 341.0965, found 341.0965.

(*Z*)-2-(Phenylimino)-3-(3,4,5-trimethoxybenzyl)thiazolidin-4-one (4r).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 3:1). Yellow solid: 53% yield (36.5 mg, 0.10 mmol); mp 124-125 °C; IR (KBr, cm⁻¹) 3427, 3035, 2928, 1715, 1620, 1589, 1457, 1333, 1328, 1126, 771, 692; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.35 (t, *J* = 7.6 Hz, 2H), 7.14 (t, *J* = 7.3 Hz, 1H), 6.94 (d, *J* = 7.8 Hz, 2H), 6.84 (s, 2H), 4.94 (s, 2H), 3.84 (s, 9H), 3.80 (s, 2H); ¹³C {¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.7, 154.4, 153.1, 148.1, 137.8, 131.6, 129.4, 124.7, 120.9, 106.8, 60.8, 56.2, 46.5, 32.8; HRMS (ESI) *m/z* [M – H][–] calcd for C₁₉H₁₉N₂O₄S 371.1071, found 371.1075.

(*Z*)-3-(Naphthalen-1-ylmethyl)-2-(phenylimino)thiazolidin-4-one (4s).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow oil: 60% yield (36.9 mg, 0.11 mmol); IR (KBr, cm⁻¹) 3435, 3055, 2925, 1727, 1633, 1594, 1487, 1375, 1325, 1155, 1022, 766, 697; ¹H NMR (500 MHz, CDCl₃, ppm) δ 8.41 (d, *J* = 8.4 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.83 (d, *J* = 8.2 Hz, 1H), 7.58 (t, *J* = 7.9 Hz, 2H), 7.52 (t, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.7 Hz, 2H), 7.15 (t, *J* = 7.4 Hz, 1H), 6.95 (d, *J* = 7.7 Hz, 2H), 5.54 (s, 2H), 3.86 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.8, 153.9, 147.9, 133.8, 131.5, 130.9, 129.3, 128.7, 128.5, 126.7, 126.4, 125.8, 125.2, 124.7, 123.9, 121.0, 44.3, 32.7; HRMS (ESI) *m/z* [M - H]⁻ calcd for C₂₀H₁₅N₂OS 331.0911, found 331.0912.

(*Z*)-2-(Phenylimino)-3-(thiophen-2-ylmethyl)thiazolidin-4-one (4t).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow oil: 73% yield (38.9 mg, 0.14 mmol); IR (KBr, cm⁻¹) 3428, 3034, 2922, 1723, 1632, 1589, 1420, 1380, 1322, 1140, 1022, 772, 692; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.37 (t, *J* = 7.7 Hz, 2H), 7.26 (d, *J* = 4.8 Hz, 1H), 7.23 (d, *J* = 2.8 Hz, 1H), 7.16 (t, *J* = 7.4 Hz, 1H), 7.02 (d, *J* = 7.6 Hz, 2H), 6.98-6.96 (m, 1H), 5.18 (s, 2H), 3.79 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.1, 153.4, 147.8, 137.1, 129.3, 128.6, 126.5, 126.3, 124.7, 121.0, 40.6, 32.8; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₄H₁₁N₂OS₂ 287.0318, found 287.0321.

(*Z*)-3-(Furan-2-ylmethyl)-2-(phenylimino)thiazolidin-4-one (4u).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow oil: 65% yield (32.7 mg, 0.12 mmol); IR (KBr, cm⁻¹) 3437, 3035, 2923, 1723, 1632, 1589, 1380, 1322, 1157, 1066, 768, 697; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.37-7.33 (m, 3H), 7.14 (t, *J* = 7.4 Hz, 1H), 6.96 (d, *J* = 7.5 Hz, 2H), 6.42 (d, *J* = 3.1 Hz, 1H), 6.34-6.33 (m, 1H), 5.03 (s, 2H), 3.82 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.3, 153.4, 149.1, 147.9, 142.3, 129.3, 124.7, 121.0, 110.5, 109.6, 39.1, 32.7; HRMS (ESI) *m*/*z* [M – H][–] calcd for C₁₄H₁₁N₂O₂S 271.0547, found 271.0545.

(*Z*)-2-(Phenylimino)-3-(pyridin-4-ylmethyl)thiazolidin-4-one (4v).^[2] Eluent: petroleum ether/ethyl acetate (v/v = 1:1). Yellow solid: 60% yield (31.4 mg, 0.11 mmol); mp 116-118 °C; IR (KBr, cm⁻¹) 3439, 3075, 3050, 2963, 2912, 1722, 1642, 1592, 1416, 1375, 1357, 1261, 1166, 1026, 801, 774, 706; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.60 (s, 2H), 7.36-7.32 (m, 4H), 7.15 (t, *J* = 7.4 Hz, 1H), 6.92 (d, *J* = 7.7 Hz, 2H), 5.02 (s, 2H), 3.88 (s, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 171.5, 153.5, 150.0, 147.5, 144.5, 129.3, 124.9, 123.5, 120.9, 45.2, 32.7; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₁₅H₁₄N₃OS 284.0852, found 284.0853.

(*Z*)-3-(Cyclohexylmethyl)-2-(phenylimino)thiazolidin-4-one (4w).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow solid: 73% yield (38.9 mg, 0.14 mmol); mp 91-92 °C; IR (KBr, cm⁻¹) 3435, 3050, 2931, 1723, 1640, 1590, 1380, 1351, 1136, 1024, 772, 700; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.34 (t, *J* = 7.5 Hz, 2H), 7.13 (t, *J* = 7.2 Hz, 1H), 6.94 (d, *J* = 7.6 Hz, 2H), 3.80 (s, 2H), 3.72 (d, *J* = 7.3 Hz, 2H), 1.95-1.92 (m, 1H), 1.70 (d, *J* = 16.7 Hz, 4H), 1.34-1.16 (m, 4H), 1.06 (dd, *J* = 22.6, 11.0 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 172.1, 154.7, 148.2, 129.3, 124.6, 121.0, 49.1, 35.9, 32.6, 30.7, 26.3, 25.8; HRMS (ESI) *m/z* [M – H][–] calcd for C₁₆H₁₉N₂OS 287.1224, found 287.1226.

(*Z*)-2-(Phenylimino)-3-propylthiazolidin-4-one (4x). Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow oil: 89% yield (38.5 mg, 0.16 mmol); IR (KBr, cm⁻¹) 3435, 3055, 2925, 1727, 1633, 1594, 1487, 1375, 1325, 1191, 1124, 766, 697; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.35 (t, *J* = 7.8 Hz, 2H), 7.14 (t, *J* = 7.4 Hz, 1H), 6.95 (d, *J* = 7.6 Hz, 2H), 3.82 (t, *J* = 7.5 Hz, 2H), 3.80 (s, 2H), 1.77 (dt, *J* = 14.9, 7.5 Hz, 2H), 0.98 (t, *J* = 7.4 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.9, 154.4, 148.2, 129.3, 124.6, 121.0, 44.8, 32.7, 20.6, 11.3; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₂H₁₃N₂OS 233.0754, found 233.0756.

(*Z*)-3-Isobutyl-2-(phenylimino)thiazolidin-4-one (4y).^[3] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow oil: 70% yield (32.1 mg, 0.13 mmol); IR (KBr, cm⁻¹) 3437, 3054, 2961, 2938, 1729, 1633, 1593, 1454, 1381, 1262, 1129, 1025, 798, 767, 696; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.34 (t, *J* = 7.7 Hz, 2H), 7.14 (t, *J* = 7.4 Hz, 1H), 6.94 (d, *J* = 7.6 Hz, 2H), 3.81 (s, 2H), 3.70 (d, *J* = 7.5 Hz, 2H), 2.32-2.24 (m, 1H), 0.97 (d, *J* = 6.7 Hz, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 172.1, 154.6, 148.2, 129.2, 124.5, 120.9, 50.2, 32.6, 26.7, 20.1; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₁₃H₁₇N₂OS 249.1056, found 249.1058.

(*Z*)-3-Isopentyl-2-(phenylimino)thiazolidin-4-one (4za). Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow oil: 80% yield (38.8 mg, 0.15 mmol); IR (KBr, cm⁻¹) 3435, 3055, 2925, 1727, 1633, 1504, 1375, 1325, 1243, 1155, 1022, 766, 697; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.35 (t, *J* = 7.5 Hz, 2H), 7.14 (t, *J* = 7.3 Hz, 1H), 6.96 (d, *J* = 7.6 Hz, 2H), 3.87 (t, *J* = 7.2 Hz, 2H), 3.78 (s, 2H), 1.66-1.58 (m, 3H), 0.98 (d, *J* = 5.9 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 171.7, 154.2, 148.2, 129.3, 124.6, 121.0, 41.9, 35.9, 32.7, 26.1, 22.5; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₄H₁₇N₂OS 261.1067, found 261.1067.

(*Z*)-2-(Phenylimino)-3-(2-(thiophen-2-yl)ethyl)thiazolidin-4-one (4zb). Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow oil: 59% yield (33.0 mg, 0.11 mmol); IR (KBr, cm⁻¹) 3435, 3055, 2925, 1720, 1633, 1594, 1487, 1375, 1175, 1075, 770, 695; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.36 (t, *J* = 7.7 Hz, 2H), 7.16 (dd, *J* = 15.7, 6.4 Hz, 2H), 6.97-6.91 (m, 4H), 4.14 (t, *J* = 7.3 Hz, 2H), 3.77 (s, 2H), 3.29 (t, *J* = 7.2 Hz, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.5, 154.0, 148.0, 140.0, 129.3, 127.0, 125.7, 124.7, 124.1, 121.0, 44.1, 32.7, 27.1; HRMS (ESI) *m/z* [M – H][–] calcd for C₁₅H₁₃N₂OS₂ 301.0475, found 301.0473.

(Z)-3-Phenethyl-2-(phenylimino)thiazolidin-4-one (4zc). Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow solid: 92% yield (50.4 mg, 0.17 mmol); mp 118-120 °C; IR (KBr, cm⁻¹) 3429, 3036, 2923, 1720, 1637, 1589, 1380, 1322, 1151, 1066, 768,

697; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.36 (t, *J* = 7.8 Hz, 2H), 7.30 (dd, *J* = 12.8, 6.9 Hz, 4H), 7.26-7.23 (m, 1H), 7.15 (t, *J* = 7.4 Hz, 1H), 6.92 (d, *J* = 7.6 Hz, 2H), 4.11 (t, *J* = 7.5 Hz, 2H), 3.75 (s, 2H), 3.05 (t, *J* = 7.5 Hz, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.6, 154.0, 148.1, 138.1, 129.3, 129.1, 128.5, 126.6, 124.6, 121.0, 44.2, 33.2, 32.6; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₇H₁₅N₂OS 295.0911, found 295.0908.

(*Z*)-3-(4-Methylphenethyl)-2-(phenylimino)thiazolidin-4-one (4zd). Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow oil: 85% yield (48.7 mg, 0.16 mmol); IR (KBr, cm⁻¹) 3434, 3045, 2934, 1725, 1630, 1592, 1383, 1344, 1211, 1155, 1025, 768, 696; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.35 (t, *J* = 7.6 Hz, 2H), 7.16 (t, *J* = 7.5 Hz, 3H), 7.12 (d, *J* = 7.6 Hz, 2H), 6.92 (d, *J* = 7.7 Hz, 2H), 4.07 (t, *J* = 8.0 Hz, 2H), 3.75 (s, 2H), 3.00 (t, *J* = 7.5 Hz, 2H), 2.33 (s, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.6, 154.0, 148.1, 136.1, 135.0, 129.2, 129.2, 128.9, 124.6, 121.0, 44.3, 32.7, 32.7, 21.1; HRMS (ESI) *m/z* [M – H][–] calcd for C₁₈H₁₇N₂OS 309.1067, found 309.1067.

(*Z*)-2-(Phenylimino)-3-(3-phenylpropyl)thiazolidin-4-one (4ze).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow oil: 60% yield (34.4 mg, 0.11 mmol); IR (KBr, cm⁻¹) 3431, 3024, 2930, 1717, 1643, 1594, 1428, 1389, 1207, 1145, 768, 697; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.36 (t, *J* = 7.8 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.24 (d, *J* = 7.3 Hz, 2H), 7.20 (t, *J* = 7.2 Hz, 1H), 7.16 (t, *J* = 7.4 Hz, 1H), 6.97 (d, *J* = 7.6 Hz, 2H), 3.94 (t, *J* = 7.3 Hz, 2H), 3.72 (s, 2H), 2.73 (t, *J* = 7.5 Hz, 2H), 2.14-2.08 (m, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.8, 154.3, 148.1, 141.2, 129.3, 128.4, 128.3, 126.0, 124.6, 121.0, 43.1, 33.2, 32.7, 28.3; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₈H₁₇N₂OS 309.1067, found 309.1067.

(*Z*)-3-(2-(1H-Indol-3-yl)ethyl)-2-(phenylimino)thiazolidin-4-one (4zf). Eluent: petroleum ether/ethyl acetate (v/v = 5:1). Yellow solid: 77% yield (47.7 mg, 0.14 mmol); mp 155-156 °C; IR (KBr, cm⁻¹) 3348, 3050, 2968, 1723, 1619, 1586, 1372, 1157, 1098, 1011, 744, 697; ¹H NMR (500 MHz, CDCl₃, ppm) δ 8.08 (s, 1H), 7.78 (d, *J* = 7.8 Hz, 1H), 7.36 (dd, *J* = 13.0, 5.4 Hz, 3H), 7.17 (ddd, *J* = 21.6, 14.9, 7.2 Hz, 3H), 7.10 (s, 1H), 6.95 (d, *J* = 7.6 Hz, 2H), 4.18 (t, *J* = 8.0 Hz, 2H), 3.74 (s, 2H), 3.22 (t, *J* = 7.5 Hz, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.8, 154.2, 148.2, 136.2, 129.3, 127.7, 124.6, 122.3, 122.1, 121.1, 119.6, 118.9, 112.5, 111.1, 43.8, 32.8, 23.0; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₉H₁₆N₃OS 334.1020, found 334.1017.

(Z)-3-Benzyl-2-((4-bromophenyl)imino)thiazolidin-4-one (5a).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow

solid: 72% yield (48.0 mg, 0.13 mmol); mp 103-105 °C; IR (KBr, cm⁻¹) 3330, 3069, 3030, 2963, 2929, 1723, 1627, 1580, 1483, 1385, 1335, 1151, 1007, 831, 701, 676; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.50 (d, *J* = 7.0 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.35-7.29 (m, 3H), 6.83 (d, *J* = 8.4 Hz, 2H), 5.01 (s, 2H), 3.83 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.5, 154.6, 146.9, 135.8, 132.3, 129.1, 128.5, 128.0, 122.8, 117.7, 46.3, 32.8; HRMS (ESI) *m*/*z* [M – H][–] calcd for C₁₆H₁₂BrN₂OS 358.9859, found 358.9858.

(*Z*)-3-Benzyl-2-((4-(trifluoromethyl)phenyl)imino)thiazolidin-4-one (5b).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow solid: 91% yield (58.9 mg, 0.17 mmol); mp 95-96 °C; IR (KBr, cm⁻¹) 3331, 3068, 3034, 2982, 2939, 1734, 1633, 1607, 1384, 1371, 1161, 1065, 847, 702, 671; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.60 (d, *J* = 8.2 Hz, 2H), 7.51 (d, *J* = 6.7 Hz, 2H), 7.36-7.32 (m, 3H), 7.03 (d, *J* = 8.2 Hz, 2H), 5.02 (s, 2H), 3.85 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.4, 155.0, 151.0, 135.7, 129.1, 128.6, 128.1, 126.5 (q, *J* = 3.7 Hz), 126.1 (d, *J* = 179.6 Hz), 123.4 (d, *J* = 46.5 Hz), 121.3, 46.4, 32.8; ¹⁹F NMR (471 MHz, CDCl₃, ppm) δ -61.94; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₇H₁₂F₃N₂OS 349.0628, found 349.0629.

(*Z*)-3-Benzyl-2-((4-methoxyphenyl)imino)thiazolidin-4-one (5c).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 10:1). Yellow oil: 90% yield (51.9 mg, 0.17 mmol); IR (KBr, cm⁻¹) 3435, 3055, 2925, 1727, 1633, 1504, 1375, 1325, 1243, 1155, 1022, 828, 766, 697; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.52 (d, *J* = 7.0 Hz, 2H), 7.32 (dq, *J* = 13.9, 6.8 Hz, 3H), 6.90 (q, *J* = 8.9 Hz, 4H), 5.03 (s, 2H), 3.81 (s, 5H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.7, 156.8, 153.6, 141.1, 136.0, 129.1, 128.5, 127.9, 122.1, 114.5, 55.5, 46.3, 32.7; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₇H₁₅N₂O₂S 311.0860, found 311.0859.

(*Z*)-4-((3-Benzyl-4-oxothiazolidin-2-ylidene)amino)benzonitrile (5d).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 5:1). Yellow oil: 71% yield (40.3 mg, 0.13 mmol); IR (KBr, cm⁻¹) 3425, 3034, 2965, 2223, 1727, 1630, 1592, 1494, 1380, 1155, 1080, 843, 696; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.63 (d, *J* = 8.3 Hz, 2H), 7.48 (d, *J* = 6.7 Hz, 2H), 7.36-7.32 (m, 3H), 7.02 (d, *J* = 8.3 Hz, 2H), 5.01 (s, 2H), 3.87 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.3, 155.4, 152.0, 135.5, 133.5, 129.1, 128.6, 128.1, 122.0, 119.0, 108.0, 46.4, 32.8; HRMS (ESI) *m/z* [M – H][–] calcd for C₁₇H₁₂N₃OS 306.0707, found 306.0710.

(*Z*)-3-Benzyl-2-((3-chlorophenyl)imino)thiazolidin-4-one (5e).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow oil: 98% yield (57.3 mg, 0.18 mmol); IR (KBr, cm⁻¹) 3436, 3038, 2933, 1727, 1631, 1585, 1380, 1339, 1164, 1083, 784, 694;

¹H NMR (500 MHz, CDCl₃, ppm) δ 7.51 (d, *J* = 7.0 Hz, 2H), 7.37-7.31 (m, 3H), 7.28 (t, *J* = 7.9 Hz, 1H), 7.13 (d, *J* = 7.9 Hz, 1H), 6.97 (s, 1H), 6.85 (d, *J* = 7.8 Hz, 1H), 5.02 (s, 2H), 3.84 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.5, 155.0, 149.2, 135.8, 134.7, 130.3, 129.1, 128.6, 128.0, 124.7, 121.4, 119.3, 46.3, 32.8; HRMS (ESI) *m/z* [M - H]⁻ calcd for C₁₆H₁₂ClN₂OS 315.0364, found 315.0361.

(*Z*)-3-Benzyl-2-((3-(trifluoromethyl)phenyl)imino)thiazolidin-4-one (5f). Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow oil: 97% yield (62.8 mg, 0.18 mmol); IR (KBr, cm⁻¹) 3425, 3033, 2925, 1630, 1592, 1494, 1380, 1335, 1155, 1025, 803, 696; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.52 (d, *J* = 7.0 Hz, 2H), 7.46 (t, *J* = 7.8 Hz, 1H), 7.40 (d, *J* = 7.7 Hz, 1H), 7.34 (dq, *J* = 14.1, 6.9 Hz, 3H), 7.23 (s, 1H), 7.14 (d, *J* = 7.7 Hz, 1H), 5.04 (s, 2H), 3.84 (s, 2H); ¹³C {¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.5, 155.4, 148.4, 135.7, 131.7 (q, *J* = 32.4 Hz), 129.8, 129.1, 128.6, 128.1, 124.5, 124.0 (d, *J* = 273.0 Hz), 121.3 (q, *J* = 3.8 Hz), 118.2 (q, *J* = 3.8 Hz), 46.4, 32.7; ¹⁹F NMR (471 MHz, CDCl₃, ppm) δ -62.64; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₇H₁₂F₃N₂OS 349.0628, found 349.0627.

(*Z*)-3-Benzyl-2-((2-chlorophenyl)imino)thiazolidin-4-one (5g).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow oil: 69% yield (40.3 mg, 0.13 mmol); IR (KBr, cm⁻¹) 3438, 3063, 2931, 1727, 1630, 1584, 1380, 1335, 1165, 1057, 754, 701; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.58 (d, *J* = 7.1 Hz, 2H), 7.43 (d, *J* = 7.9 Hz, 1H), 7.32 (dq, *J* = 14.0, 6.9 Hz, 3H), 7.23 (t, *J* = 7.6 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.95 (d, *J* = 7.8 Hz, 1H), 5.07 (s, 2H), 3.83 (s, 2H); ¹³C {¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.6, 156.0, 145.1, 135.7, 130.2, 129.3, 128.5, 128.0, 127.5, 126.5, 125.6, 121.8, 46.4, 32.9; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₆H₁₂ClN₂OS 315.0364, found 315.0366.

(*Z*)-3-Benzyl-2-((2-(trifluoromethyl)phenyl)imino)thiazolidin-4-one (5h).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow oil: 97% yield (62.8 mg, 0.18 mmol); IR (KBr, cm⁻¹) 3439, 3036, 2937, 1731, 1634, 1380, 1317, 1166, 1032, 763, 699; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.68 (d, *J* = 7.8 Hz, 1H), 7.53 (d, *J* = 7.1 Hz, 2H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.36-7.31 (m, 3H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.01 (d, *J* = 7.9 Hz, 1H), 5.04 (s, 2H), 3.83 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.6, 155.6, 146.2, 135.6, 132.7, 129.2, 128.5, 128.0, 126.9 (q, *J* = 5.1 Hz), 124.3, 123.6 (d, *J* = 316.8 Hz), 122.6 (d, *J* = 11.7 Hz), 121.4, 46.6, 32.8; ¹⁹F NMR (471 MHz, CDCl₃, ppm) δ -61.63; HRMS (ESI) *m/z* [M – H][–] calcd for C₁₇H₁₂F₃N₂OS 349.0628, found 349.0631.

(*Z*)-3-Benzyl-2-((3,4-dichlorophenyl)imino)thiazolidin-4-one (5i). Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow oil: 90% yield (58.3 mg, 0.17 mmol); IR (KBr, cm⁻¹) 3439, 3040, 2933, 1727, 1629, 1582, 1467, 1377, 1167, 1026, 817, 697; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.48 (d, *J* = 6.9 Hz, 2H), 7.39 (d, *J* = 8.5 Hz, 1H), 7.34-7.31 (m, 3H), 7.07 (d, *J* = 1.9 Hz, 1H), 6.81 (dd, *J* = 8.4, 2.0 Hz, 1H), 5.00 (s, 2H), 3.84 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.4, 155.6, 147.4, 135.6, 132.9, 130.9, 129.0, 128.6, 128.1, 128.1, 123.1, 120.7, 46.4, 32.8; HRMS (ESI) *m/z* [M – H][–] calcd for C₁₆H₁₁Cl₂N₂OS 348.9975, found 348.9972.

(*Z*)-3-Benzyl-2-((2,4-dimethoxyphenyl)imino)thiazolidin-4-one (5j).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 5:1). Yellow oil: 57% yield (36.1 mg, 0.11 mmol); IR (KBr, cm⁻¹) 3431, 3032, 2958, 1722, 1637, 1504, 1381, 1209, 1166, 1033, 802, 701; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.59 (d, *J* = 7.1 Hz, 2H), 7.31 (dq, *J* = 14.2, 7.0 Hz, 3H), 6.79 (d, *J* = 8.5 Hz, 1H), 6.55 (d, *J* = 2.2 Hz, 1H), 6.46 (dd, *J* = 8.5, 2.3 Hz, 1H), 5.06 (s, 2H), 3.80 (d, *J* = 6.0 Hz, 6H), 3.77 (s, 2H); ¹³C {¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.8, 157.9, 155.1, 151.9, 136.1, 130.7, 129.2, 128.4, 127.8, 121.5, 104.2, 100.2, 55.9, 55.5, 46.3, 32.8; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₈H₁₇N₂O₃S 341.0965, found 341.0964.

(*Z*)-3-Benzyl-2-((3,5-bis(trifluoromethyl)phenyl)imino)thiazolidin-4-one (5k).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow solid: 81% yield (62.6 mg, 0.15 mmol); mp 123-125 °C; IR (KBr, cm⁻¹) 3448, 3069, 3030, 2957, 1722, 1634, 1388, 1281, 1168, 1126, 979, 884, 794, 697; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.64 (s, 1H), 7.49 (d, *J* = 6.8 Hz, 2H), 7.39-7.33 (m, 5H), 5.03 (s, 2H), 3.89 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.3, 156.8, 149.3, 135.4, 132.7 (q, *J* = 97.0 Hz), 129.0, 128.7, 128.2, 123.1 (q, *J* = 260.7 Hz), 121.7 (d, *J* = 2.9 Hz), 118.1 (dt, *J* = 7.7, 3.8 Hz), 46.5, 32.8; ¹⁹F NMR (471 MHz, CDCl₃, ppm) δ -62.94; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₈H₁₁F₆N₂OS 417.0502, found 417.0499.

(*Z*)-3-Benzyl-2-(mesitylimino)thiazolidin-4-one (51).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow oil: 55% yield (33.0 mg, 0.10 mmol); IR (KBr, cm⁻¹) 3436, 3035, 2959, 1727, 1641, 1380, 1339, 1170, 1032, 800, 701; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.53 (d, *J* = 7.0 Hz, 2H), 7.35-7.30 (m, 3H), 6.85 (s, 2H), 5.08 (s, 2H), 3.82 (s, 2H), 2.27 (s, 3H), 1.97 (s, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.8, 153.6, 143.1, 136.0, 133.5, 129.0, 128.9, 128.4, 127.9, 127.9, 46.3, 32.9, 20.8, 17.7; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₉H₁₉N₂OS 323.1224, found 323.1224.

(*Z*)-3-Benzyl-2-(naphthalen-1-ylimino)thiazolidin-4-one (5m).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow oil: 77% yield (47.3 mg, 0.14 mmol); IR (KBr, cm⁻¹) 3439, 3055, 2965, 1725, 1632, 1571, 1380, 1261, 1080, 1026, 804, 703; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.83 (d, *J* = 8.1 Hz, 1H), 7.65 (d, *J* = 8.3 Hz, 1H), 7.61 (dd, *J* = 14.7, 7.8 Hz, 3H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.44-7.34 (m, 5H), 7.02 (d, *J* = 7.2 Hz, 1H), 5.18 (s, 2H), 3.84 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.8, 154.4, 144.4, 136.0, 134.4, 129.1, 128.6, 128.0, 127.9, 127.4, 126.4, 125.7, 125.6, 124.8, 123.4, 115.0, 46.6, 32.8; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₂₀H₁₅N₂OS 331.0911, found 331.0913.

(*Z*)-3-Benzyl-2-(benzylimino)thiazolidin-4-one (5n).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 15:1). Yellow solid: 70% yield (38.3 mg, 0.13 mmol); mp 67-69 °C; IR (KBr, cm⁻¹) 3341, 3066, 3027, 2960, 2927, 1715, 1646, 1495, 1422, 1377, 1328, 1261, 1157, 1027, 801, 704; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.47 (d, *J* = 6.5 Hz, 2H), 7.35-7.27 (m, 8H), 4.97 (s, 2H), 4.54 (s, 2H), 3.85 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.5, 152.7, 139.3, 136.3, 129.0, 128.4, 128.4, 127.8, 127.4, 126.9, 55.4, 46.2, 32.7; HRMS (ESI) *m*/*z* [M – H][–] calcd for C₁₇H₁₅N₂OS 295.0911, found 295.0909.

(*Z*)-3-Benzyl-2-(methylimino)thiazolidin-4-one (50).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 10:1). Yellow solid: 70% yield (28.5 mg, 0.13 mmol); mp 157-159 °C; IR (KBr, cm⁻¹) 3335, 3081, 3019, 2973, 2938, 1720, 1639, 1409, 1375, 1293, 1112, 1033, 790, 734; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.36-7.33 (m, 4H), 7.28-7.26 (m, 1H), 4.52 (s, 2H), 3.84 (s, 2H), 3.23 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 171.6, 153.7, 139.2, 128.5, 127.6, 127.0, 55.5, 32.8, 29.6; HRMS (ESI) *m/z* [M – H]⁻ calcd for C₁₁H₁₁N₂OS 219.0598, found 219.0599.

Ethyl (*Z*)-(3-benzyl-4-oxothiazolidin-2-ylidene)carbamate (5p).^[1] Eluent: petroleum ether/ethyl acetate (v/v = 5:1). Yellow solid: 42% yield (21.6 mg, 0.08 mmol); mp 140-142 °C; IR (KBr, cm⁻¹) 3473, 3072, 3041, 2963, 2940, 1743, 1674, 1541, 1379, 1261, 1168, 1019, 799, 731; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.44 (d, *J* = 6.6 Hz, 2H), 7.32-7.28 (m, 3H), 5.02 (s, 2H), 4.28 (q, *J* = 7.1 Hz, 2H), 3.78 (s, 2H), 1.37 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm) δ 173.5, 172.7, 162.3, 135.1, 129.0, 128.6, 128.2, 62.8, 47.0, 32.8, 14.3; HRMS (ESI) *m/z* [M – H][–] calcd for C₁₃H₁₃N₂O₃S 277.0652, found 277.0650.

(*Z*)-5-((*Z*)-4-Nitrobenzylidene)-2-(phenylimino)-3-(pyridin-4-ylmethyl)thiazolidin-4-one (7).^[2] Eluent: petroleum ether/ethyl acetate (v/v = 2:1). Orange solid: 40% yield (30.7 mg, 0.07 mmol); mp 142-144 °C; IR (KBr, cm⁻¹) 3450, 3036, 2960, 2922, 1644, 1591, 1455, 1379, 1338, 1262, 1018, 801, 709; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.63 (s, 2H), 8.26 (d, *J* = 8.4 Hz, 2H), 7.80 (s, 1H), 7.59 (d, *J* = 8.3 Hz, 2H), 7.40 (d, *J* = 7.4 Hz, 4H), 7.23 (d, *J* = 7.3 Hz, 1H), 6.96 (d, *J* = 7.7 Hz, 2H), 5.19 (s, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 165.9, 150.2, 148.4, 147.7, 147.2, 144.3, 139.6, 130.4, 129.6, 128.5, 125.9, 125.6, 124.3, 123.4, 120.9, 45.5; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₂₂H₁₇N₄O₃S 417.1016, found 417.1013.

(*Z*)-3-Isobutyl-5-((*Z*)-4-nitrobenzylidene)-2-(phenylimino)thiazolidin-4-one (8).^[3] Eluent: petroleum ether/ethyl acetate (v/v = 20:1). Yellow solid: 61% yield (43.0 mg, 0.11 mmol); mp 116-118 °C; IR (KBr, cm⁻¹) 3438, 3032, 2961, 2940, 1705, 1644, 1592, 1381, 1342, 1126, 848, 767, 696; ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.24 (d, *J* = 8.5 Hz, 2H), 7.75 (s, 1H), 7.59 (d, *J* = 8.5 Hz, 2H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.22 (t, *J* = 7.4 Hz, 1H), 6.99 (d, *J* = 7.6 Hz, 2H), 3.86 (d, *J* = 7.4 Hz, 2H), 2.35 (td, *J* = 13.6, 6.9 Hz, 1H), 1.01 (d, *J* = 6.6 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 166.5, 149.4, 147.9, 147.5, 140.0, 130.3, 129.5, 127.4, 126.6, 125.2, 124.2, 121.0, 50.6, 27.0, 20.1; HRMS (ESI) *m*/*z* [M + H]⁺ calcd for C₂₀H₂₀N₃O₃S 382.1220, found 382.1217.

1-Benzyl-3-phenylthiourea (9).^[4] Eluent: petroleum ether/ethyl acetate (v/v = 5:1). White solid; mp 152-154 °C; IR (KBr, cm⁻¹) 3363, 3149, 2972, 2921, 1538, 1504, 1294, 1242, 1065, 970, 741, 693; ¹H NMR (500 MHz, DMSO- d_6 , ppm) δ 9.63 (s, 1H), 8.17 (s, 1H), 7.43 (d, J = 7.8 Hz, 2H), 7.33 (dd, J = 11.2, 6.3 Hz, 6H), 7.26 (td, J = 8.5, 4.2 Hz, 1H), 7.12 (t, J = 7.3 Hz, 1H), 4.75 (s, 2H); ¹³C{¹H} NMR (126 MHz, DMSO- d_6 , ppm) δ 181.3, 139.6, 139.5, 129.1, 128.8, 127.9, 127.4, 124.8, 123.8, 47.7.

References

[1] W. Guo, M. Zhao, W. Tan, L. Zheng, K. Tao, L. Liu, X. Wang, D. Chen and X. Fan, J. Org. Chem., 2018, 83, 1402–1413.

- [2] M. F. Ansari, D. Idrees, M. I. Hassan, K. Ahmad, F. Avecilla and A. Azam, Eur. J. Med. Chem., 2018, 144, 544-556.
- [3] M. Mushtaque, F. Avecilla and A. Azam, Eur. J. Med. Chem., 2012, 55, 439-448.
- [4] (a) L. C. de Sequeira Aguiar, G. M. Viana, M. V. dos Santos Romualdo, M. V. Costa and B. S. Bonato. *Lett. Org. Chem.*, 2011, 8, 540–544; (b) T. Bade and R. R. Vedula, *J. Heterocyclic Chem.*, 2015, 52, 1883–1886; (c) N. Tumula, N. Jatangi, R. K. Palakodety, S. Balasubramanian and M. Nakka, *J. Org. Chem.*, 2017, 82, 5310–5316; (d) J.-J. Chu, B.-L. Hu, Z.-Y. Liao

and X.-G. Zhang, J. Org. Chem., 2016, **81**, 8647–8652; (e) S. Wangngae, M. Pattarawarapan and W. Phakhodee, J. Org. Chem., 2017, **82**, 10331–10340.

NMR Spectra

 $^{13}C{^{1}H}$ NMR of **4a** in CDCl₃ (126 MHz)

¹H NMR of 4d in CDCl₃ (500 MHz)

¹⁰ 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 ¹¹ (ppm) ¹⁹F NMR of **4i** in CDCl₃ (471 MHz)

 $^{13}C\{^{1}\text{H}\}$ NMR of 4k in CDCl₃ (126 MHz)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR of 4p in CDCl₃ (126 MHz)

 $^{13}C{^{1}H}$ NMR of 4s in CDCl₃ (126 MHz)

 $^{13}C\{^{1}H\}$ NMR of **4zb** in CDCl₃ (126 MHz)

¹⁹F NMR of **5f** in CDCl₃ (471 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -21 11 (ppm)

 $^{13}C\{^{1}H\}$ NMR of **5m** in CDCl₃ (126 MHz)

 $^{13}C\{^{1}H\}$ NMR of **5n** in CDCl₃ (126 MHz)

 $^{13}C\{^{1}H\}$ NMR of **50** in CDCl₃ (126 MHz)

 $^{13}C\{^{1}\text{H}\}$ NMR of 5p in CDCl₃ (126 MHz)

